🏅 Starting Info
¶Accuracy: Accuracy is the most straightforward metric and measures the overall correctness of the model's predictions. It calculates the ratio of correct predictions to the total number of predictions made.
Precision: Precision measures the proportion of correctly predicted positive instances (true positives) out of the total instances predicted as positive (true positives + false positives). It indicates the model's ability to avoid false positives.
Recall (Sensitivity or True Positive Rate): Recall calculates the proportion of correctly predicted positive instances (true positives) out of the total actual positive instances (true positives + false negatives). It indicates the model's ability to identify positive instances.
Specificity (True Negative Rate): Specificity measures the proportion of correctly predicted negative instances (true negatives) out of the total actual negative instances (true negatives + false positives). It indicates the model's ability to identify negative instances.
F1 Score: The F1 score is the harmonic mean of precision and recall. It provides a balanced measure between precision and recall, considering both false positives and false negatives. It is useful when the class distribution is imbalanced.
Area Under the ROC Curve (AUC-ROC): The ROC curve represents the trade-off between true positive rate (sensitivity) and false positive rate (1 - specificity) at various classification thresholds. AUC-ROC measures the overall performance of the model across different thresholds, providing a single value to compare different models. A higher AUC-ROC indicates better model performance.
Cohen's Kappa: Cohen's Kappa is a statistic that measures the agreement between the predicted and actual classifications, while taking into account the agreement that could occur by chance. It is useful when evaluating models with imbalanced class distributions.
</font>
Logistic Regression: Logistic regression models the probability of a binary or multi-class outcome using a logistic function. It is widely used for binary classification tasks and can be extended to handle multiple classes.
from sklearn.linear_model import LogisticRegression
Decision Tree: Decision tree classifiers partition the feature space into regions based on feature values. Each partition represents a leaf node with a predicted class label.
from sklearn.tree import DecisionTreeClassifier
Random Forest: Random forest classifiers are ensemble models that combine multiple decision trees. They improve prediction accuracy by averaging the predictions of individual trees.
from sklearn.ensemble import RandomForestClassifier
Gradient Boosting: Gradient boosting classifiers build an ensemble of weak learners, typically decision trees, in a sequential manner. Each subsequent model corrects the errors made by the previous models, leading to improved predictions.
from sklearn.ensemble import GradientBoostingClassifier
Support Vector Machines (SVM): SVM classifiers find the optimal hyperplane that separates the data into different classes with the maximum margin. They can handle linear and nonlinear classification tasks.
from sklearn.svm import SVC
K-Nearest Neighbors (KNN): KNN classifiers predict the class label of an instance by considering the labels of its k nearest neighbors in the feature space.
from sklearn.neighbors import KNeighborsClassifier
Naive Bayes: Naive Bayes classifiers are probabilistic models that use Bayes' theorem with strong independence assumptions between features. They are fast and effective for text classification and other tasks.
from sklearn.naive_bayes import GaussianNB
Neural Networks: Neural network classifiers utilize deep learning architectures to model complex relationships between predictors and class labels. They consist of multiple interconnected layers of artificial neurons that learn to approximate the target function.
from sklearn.neural_network import MLPClassifier
AdaBoost: AdaBoost is an ensemble method that combines multiple weak classifiers to create a strong classifier. It assigns higher weights to misclassified instances, focusing on difficult examples.
from sklearn.ensemble import AdaBoostClassifier
Gradient Boosting with XGBoost: XGBoost is an optimized gradient boosting classifier known for its high performance and scalability. It offers various boosting algorithms and regularization techniques.
import xgboost as xgb
Gradient Boosting with LightGBM: LightGBM is another gradient boosting classifier that provides high efficiency and handles large-scale data. It offers faster training speed and supports categorical features.
import lightgbm as lgb
Gradient Boosting with CatBoost: CatBoost is a gradient boosting classifier that supports categorical features and incorporates innovative techniques such as ordered boosting and symmetric trees.
import catboost as cb
Logistic Regression with L1 Regularization (Lasso): L1 regularized logistic regression can perform feature selection by setting some coefficients to exactly zero. It helps to reduce the number of irrelevant features.
from sklearn.linear_model import LogisticRegression
Support Vector Machines with RBF Kernel: SVM classifiers with radial basis function (RBF) kernel can handle nonlinear classification tasks by mapping the input space into a higher-dimensional feature space.
from sklearn.svm import SVC
Extra Trees: Extra Trees classifiers are ensemble models similar to random forests but with some differences in the way they build individual trees and handle feature splits.
from sklearn.ensemble import ExtraTreesClassifier
Gaussian Process: Gaussian process classifiers model the decision boundary as a distribution over functions. They provide a nonparametric approach to classification that captures uncertainty in predictions.
from sklearn.gaussian_process import GaussianProcessClassifier
Nearest Centroid: Nearest Centroid classifiers compute the centroids of each class and classify instances based on the nearest centroid. They are simple and fast but assume that all features are equally important.
from sklearn.neighbors import NearestCentroid
Quadratic Discriminant Analysis (QDA): QDA classifiers model the probability distribution of each class using a quadratic function. They assume a quadratic decision boundary and can capture complex relationships.
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
Linear Discriminant Analysis (LDA): LDA classifiers find a linear combination of features that maximizes the separation between classes. They project the data onto a lower-dimensional space while preserving class information.
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
HistGradientBoosting Classifier: HistGradientBoosting is a histogram-based gradient boosting classifier that provides fast and accurate predictions. It can handle large-scale datasets.
from sklearn.ensemble import HistGradientBoostingClassifier
Bagging: Bagging classifiers combine multiple base estimators, such as decision trees or SVMs, by training them on random subsets of the training data. They reduce variance and improve generalization.
from sklearn.ensemble import BaggingClassifier
Calibrated Classifier: Calibrated classifiers assign class probabilities calibrated to the predicted scores. They can improve the reliability of probabilistic predictions.
from sklearn.calibration import CalibratedClassifierCV
Multi-layer Perceptron (MLP) Classifier: MLP classifiers are feedforward neural networks with multiple hidden layers. They can learn complex patterns and are effective for a wide range of classification tasks.
from sklearn.neural_network import MLPClassifier
</font>
🛫 Imports
¶'''
--------------------------------------------------------
CLASSIFICATION MODELS
--------------------------------------------------------
'''
from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import BaggingClassifier
from sklearn.linear_model import LogisticRegression
from sklearn import svm
from sklearn.naive_bayes import GaussianNB
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import GradientBoostingClassifier
from sklearn.ensemble import AdaBoostClassifier
from xgboost import XGBClassifier
from lightgbm import LGBMClassifier
from catboost import CatBoostClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import VotingClassifier
from sklearn.svm import SVC
'''
--------------------------------------------------------
FEAUTURE ENGINEERING
--------------------------------------------------------
'''
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.metrics import plot_confusion_matrix, classification_report
from sklearn.pipeline import make_pipeline
from sklearn.preprocessing import MinMaxScaler
from sklearn.model_selection import GridSearchCV
'''
--------------------------------------------------------
OTHER
--------------------------------------------------------
'''
import missingno as msno
import tensorflow as tf
from tensorflow import keras
import numpy as np
import matplotlib.pyplot as plt
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.metrics import mean_squared_error, r2_score, accuracy_score, roc_auc_score
from sklearn.metrics import accuracy_score, r2_score, roc_auc_score, precision_score, recall_score, f1_score
import seaborn as sns
import plotly.express as px
import pandas as pd
import catboost as cb
from IPython.display import Image
import warnings
import optuna
def ignoreWarnings():
warnings.filterwarnings('ignore')
data = pd.read_csv('Csv Files/heart.csv')
pd.set_option('display.max_columns', None) #This will display all the columns in the dataframe
data
Age | Sex | ChestPainType | RestingBP | Cholesterol | FastingBS | RestingECG | MaxHR | ExerciseAngina | Oldpeak | ST_Slope | HeartDisease | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 40 | M | ATA | 140 | 289 | 0 | Normal | 172 | N | 0.0 | Up | 0 |
1 | 49 | F | NAP | 160 | 180 | 0 | Normal | 156 | N | 1.0 | Flat | 1 |
2 | 37 | M | ATA | 130 | 283 | 0 | ST | 98 | N | 0.0 | Up | 0 |
3 | 48 | F | ASY | 138 | 214 | 0 | Normal | 108 | Y | 1.5 | Flat | 1 |
4 | 54 | M | NAP | 150 | 195 | 0 | Normal | 122 | N | 0.0 | Up | 0 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
913 | 45 | M | TA | 110 | 264 | 0 | Normal | 132 | N | 1.2 | Flat | 1 |
914 | 68 | M | ASY | 144 | 193 | 1 | Normal | 141 | N | 3.4 | Flat | 1 |
915 | 57 | M | ASY | 130 | 131 | 0 | Normal | 115 | Y | 1.2 | Flat | 1 |
916 | 57 | F | ATA | 130 | 236 | 0 | LVH | 174 | N | 0.0 | Flat | 1 |
917 | 38 | M | NAP | 138 | 175 | 0 | Normal | 173 | N | 0.0 | Up | 0 |
918 rows × 12 columns
📊 EDA
¶Variable Name | Units or Categories | Description | Qaul / Quan | Type |
---|---|---|---|---|
Age | Years | How many years the person has been alive | Quantitative | Discrete |
Sex | Male (M); Female(F) | What gender the person is | Qaulitative | Nominal |
ChestPainType | Typical Angina (TA); Atypical Angina (ATA); Non-Anginal Pain (NAP); Asymptomatic (ASY) | What type of chest pain is the person experiencing | Qualitative | Nomial |
RestingBP | mm Hg | The Patients resting Blood pressure | Quantitative | Discrete |
Cholesterol | mm/dl | Patients Cholesterol levels | Quantitative | Discrete |
FastingBS | 1: if FastingBS > 120 mg/dl, 0: otherwise | Fasting blood sugar | Qualitative | Nominal |
RestingECG | Normal (Normal); Having ST-T wave abnormality (ST); Showing probable or definite left ventricular hypertrophy by Estes' criteria (LVH) | The patients Resting ECG | Qualitative | Nominal |
MaxHR | Between 60 and 202 | The patients maximum heart rate achieved | Quantitative | Discrete |
ExerciseAngina | Yes (Y); No (N) | If there was an exercise-induced angina | Qualitative | Nominal |
Oldpeak | ST [Numeric value measured in depression] | ST depression induced by exercise relative to rest | Quantitative | Continuous |
ST_Slope | Upsloping (Up); Flat (Flat); Downsloping (Down) | The slope of the peak exercise ST segment | Qualitative | Nominal |
HeartDisease | Heart Disease (1); Normal (0) | Output class that describes if someone has heart disease or not | Qualitative | Nominal |
def summary(df):
# Print the shape of the DataFrame
print(f'data shape: {df.shape}')
# Create a summary DataFrame
summ = pd.DataFrame(df.dtypes, columns=['data type'])
# Calculate the number of missing values
summ['#missing'] = df.isnull().sum().values
# Calculate the percentage of missing values
summ['%missing'] = df.isnull().sum().values / len(df) * 100
# Calculate the number of unique values
summ['#unique'] = df.nunique().values
# Create a descriptive DataFrame
desc = pd.DataFrame(df.describe(include='all').transpose())
# Add the minimum, maximum, and first three values to the summary DataFrame
summ['min'] = desc['min'].values
summ['max'] = desc['max'].values
summ['first value'] = df.loc[0].values
summ['second value'] = df.loc[1].values
summ['third value'] = df.loc[2].values
# Return the summary DataFrame
return summ
summary(data)
data shape: (918, 12)
data type | #missing | %missing | #unique | min | max | first value | second value | third value | |
---|---|---|---|---|---|---|---|---|---|
Age | int64 | 0 | 0.0 | 50 | 28.0 | 77.0 | 40 | 49 | 37 |
Sex | object | 0 | 0.0 | 2 | NaN | NaN | M | F | M |
ChestPainType | object | 0 | 0.0 | 4 | NaN | NaN | ATA | NAP | ATA |
RestingBP | int64 | 0 | 0.0 | 67 | 0.0 | 200.0 | 140 | 160 | 130 |
Cholesterol | int64 | 0 | 0.0 | 222 | 0.0 | 603.0 | 289 | 180 | 283 |
FastingBS | int64 | 0 | 0.0 | 2 | 0.0 | 1.0 | 0 | 0 | 0 |
RestingECG | object | 0 | 0.0 | 3 | NaN | NaN | Normal | Normal | ST |
MaxHR | int64 | 0 | 0.0 | 119 | 60.0 | 202.0 | 172 | 156 | 98 |
ExerciseAngina | object | 0 | 0.0 | 2 | NaN | NaN | N | N | N |
Oldpeak | float64 | 0 | 0.0 | 53 | -2.6 | 6.2 | 0.0 | 1.0 | 0.0 |
ST_Slope | object | 0 | 0.0 | 3 | NaN | NaN | Up | Flat | Up |
HeartDisease | int64 | 0 | 0.0 | 2 | 0.0 | 1.0 | 0 | 1 | 0 |
for col in data.select_dtypes(include=[np.number]).columns:
print(f"{col} has {data[col].nunique()} unique value")
Age has 50 unique value RestingBP has 67 unique value Cholesterol has 222 unique value FastingBS has 2 unique value MaxHR has 119 unique value Oldpeak has 53 unique value HeartDisease has 2 unique value
string_col = data.select_dtypes(include="object").columns
data[string_col] = data[string_col].astype("string")
data.info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 918 entries, 0 to 917 Data columns (total 12 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Age 918 non-null int64 1 Sex 918 non-null string 2 ChestPainType 918 non-null string 3 RestingBP 918 non-null int64 4 Cholesterol 918 non-null int64 5 FastingBS 918 non-null int64 6 RestingECG 918 non-null string 7 MaxHR 918 non-null int64 8 ExerciseAngina 918 non-null string 9 Oldpeak 918 non-null float64 10 ST_Slope 918 non-null string 11 HeartDisease 918 non-null int64 dtypes: float64(1), int64(6), string(5) memory usage: 86.2 KB
int_col = data.select_dtypes(include="int64").columns
float_col = data.select_dtypes(include="float64").columns
#Convert to int8, int16, int32, float8, float16, float32 to save memory
for col in int_col:
if data[col].max()<128:
data[col] = data[col].astype('int8')
elif data[col].max()<32768:
data[col] = data[col].astype('int16')
else:
data[col].astype('int32')
for col in float_col:
if data[col].max()<32768:
data[col] = data[col].astype('float16')
else:
data[col].astype('float32')
data.info()
<class 'pandas.core.frame.DataFrame'> RangeIndex: 918 entries, 0 to 917 Data columns (total 12 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Age 918 non-null int8 1 Sex 918 non-null string 2 ChestPainType 918 non-null string 3 RestingBP 918 non-null int16 4 Cholesterol 918 non-null int16 5 FastingBS 918 non-null int8 6 RestingECG 918 non-null string 7 MaxHR 918 non-null int16 8 ExerciseAngina 918 non-null string 9 Oldpeak 918 non-null float16 10 ST_Slope 918 non-null string 11 HeartDisease 918 non-null int8 dtypes: float16(1), int16(3), int8(3), string(5) memory usage: 45.8 KB
cat_cols = data.select_dtypes("string").columns.to_list()
cat_cols.append('FastingBS')
print(f'''The categorical columns are
{cat_cols}
''')
num_cols = [i for i in data.columns if i not in cat_cols and i != 'HeartDisease']
print(f'''The categorical columns are
{num_cols}
''')
The categorical columns are ['Sex', 'ChestPainType', 'RestingECG', 'ExerciseAngina', 'ST_Slope', 'FastingBS'] The categorical columns are ['Age', 'RestingBP', 'Cholesterol', 'MaxHR', 'Oldpeak']
data.describe()
Age | RestingBP | Cholesterol | FastingBS | MaxHR | Oldpeak | HeartDisease | |
---|---|---|---|---|---|---|---|
count | 918.000000 | 918.000000 | 918.000000 | 918.000000 | 918.000000 | 918.000000 | 918.000000 |
mean | 53.510893 | 132.396514 | 198.799564 | 0.233115 | 136.809368 | 0.887207 | 0.553377 |
std | 9.432617 | 18.514154 | 109.384145 | 0.423046 | 25.460334 | 1.066406 | 0.497414 |
min | 28.000000 | 0.000000 | 0.000000 | 0.000000 | 60.000000 | -2.599609 | 0.000000 |
25% | 47.000000 | 120.000000 | 173.250000 | 0.000000 | 120.000000 | 0.000000 | 0.000000 |
50% | 54.000000 | 130.000000 | 223.000000 | 0.000000 | 138.000000 | 0.600098 | 1.000000 |
75% | 60.000000 | 140.000000 | 267.000000 | 0.000000 | 156.000000 | 1.500000 | 1.000000 |
max | 77.000000 | 200.000000 | 603.000000 | 1.000000 | 202.000000 | 6.199219 | 1.000000 |
plt.figure(figsize=(10, 8))
sns.scatterplot(data=data,x='Cholesterol',y='RestingBP',hue='RestingBP')
<AxesSubplot:xlabel='Cholesterol', ylabel='RestingBP'>
There seems to be a few records with Cholesterol = 0 and 1 record with RestingBP = 0.
The chances of a living person having a Cholesterol or BP = 0 is probably too low to consider.
So these are likely input errors.
So we need to fix them somehow.
Let's convert the 0s to nulls and then visualise them
</font>
data['Cholesterol'].replace(0,np.nan,inplace=True)
data['RestingBP'].replace(0,np.nan,inplace=True)
msno.matrix(data)
<AxesSubplot:>
It looks like there are null values in the centre of the data.
Assuming these values where collected in chronological order, there was a time where someone was inputting values incorrectly.
Or one of the sources was unreliable.
When we build the model we can experiment with different techniques to fill these gaps.
For now we will drop the values which are = 0.
For the sake of analysing the data.
</font>
data = data.dropna()
data.describe()
Age | RestingBP | Cholesterol | FastingBS | MaxHR | Oldpeak | HeartDisease | |
---|---|---|---|---|---|---|---|
count | 746.000000 | 746.000000 | 746.000000 | 746.000000 | 746.000000 | 746.000000 | 746.000000 |
mean | 52.882038 | 133.022788 | 244.635389 | 0.167560 | 140.226542 | 0.901367 | 0.477212 |
std | 9.505888 | 17.282750 | 59.153524 | 0.373726 | 24.524107 | 1.072266 | 0.499816 |
min | 28.000000 | 92.000000 | 85.000000 | 0.000000 | 69.000000 | -0.099976 | 0.000000 |
25% | 46.000000 | 120.000000 | 207.250000 | 0.000000 | 122.000000 | 0.000000 | 0.000000 |
50% | 54.000000 | 130.000000 | 237.000000 | 0.000000 | 140.000000 | 0.500000 | 0.000000 |
75% | 59.000000 | 140.000000 | 275.000000 | 0.000000 | 160.000000 | 1.500000 | 1.000000 |
max | 77.000000 | 200.000000 | 603.000000 | 1.000000 | 202.000000 | 6.199219 | 1.000000 |
sns.scatterplot(data=data,x='Cholesterol',y='RestingBP',hue='RestingBP')
<AxesSubplot:xlabel='Cholesterol', ylabel='RestingBP'>
sns.set(rc = {'figure.figsize':(20,10)})
sns.heatmap(data.corr(), annot=True) #By saying annot=True it writes the correlation in each cell
<AxesSubplot:>
We see that age and heart disease doesn't seem to have a strong relationship.
But there is a slightly notible negative correlation between MaxHeartRate and HeartDisease.
This means that as the MaxHeartRate increases the chance of heart disease decreases.
The exact opposite could also be noticed with the Oldpeak.
A problem we have here is that every feature here is numeric, so we are completely disregarding the categorical features. (Apart from heart disease)
So to quickly fix that we will turn the categorical features into dummy variables.
</font>
cat_cols.remove('Sex')
cat_cols.remove('FastingBS')
dataFrameOne = pd.get_dummies(data, columns = cat_cols, drop_first = False)
dataFrameOne = pd.get_dummies(dataFrameOne, columns = ['Sex'], drop_first = True)
cat_cols.append('Sex')
cat_cols.append('FastingBS')
dataFrameOne
Age | RestingBP | Cholesterol | FastingBS | MaxHR | Oldpeak | HeartDisease | ChestPainType_ASY | ChestPainType_ATA | ChestPainType_NAP | ChestPainType_TA | RestingECG_LVH | RestingECG_Normal | RestingECG_ST | ExerciseAngina_N | ExerciseAngina_Y | ST_Slope_Down | ST_Slope_Flat | ST_Slope_Up | Sex_M | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 40 | 140.0 | 289.0 | 0 | 172 | 0.000000 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 |
1 | 49 | 160.0 | 180.0 | 0 | 156 | 1.000000 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 |
2 | 37 | 130.0 | 283.0 | 0 | 98 | 0.000000 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 |
3 | 48 | 138.0 | 214.0 | 0 | 108 | 1.500000 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
4 | 54 | 150.0 | 195.0 | 0 | 122 | 0.000000 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 |
... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... | ... |
913 | 45 | 110.0 | 264.0 | 0 | 132 | 1.200195 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
914 | 68 | 144.0 | 193.0 | 1 | 141 | 3.400391 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 1 |
915 | 57 | 130.0 | 131.0 | 0 | 115 | 1.200195 | 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 1 |
916 | 57 | 130.0 | 236.0 | 0 | 174 | 0.000000 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 0 |
917 | 38 | 138.0 | 175.0 | 0 | 173 | 0.000000 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 |
746 rows × 20 columns
sns.pairplot(data)
<seaborn.axisgrid.PairGrid at 0x1b0f13cf160>
plt.figure(figsize=(15,10))
for i,col in enumerate(data.columns,1):
plt.subplot(4,3,i) #4 rows, 3 columns, and i is the number of the subplot
plt.title(f"Distribution of {col} Data")
sns.histplot(data[col],kde=True) #Setting Kernel Density Estimation (KDE) to True will draw a line, smoothing the distribution.
plt.tight_layout()
plt.plot()
sns.set(rc = {'figure.figsize':(25,12)})
sns.heatmap(dataFrameOne.corr(), annot=True) #We pass the correlation
<AxesSubplot:>
Looking at the correlations we see a somewhat notible negative correlation between MaxHR and HeartDisease.
As well as notible positive correlation between Oldpeak and HeartDisease.
A interestingly high positive correlation between Asymptomatic chest pains and HeartDisease.
An interestinly high negative correlation between ATA chest pains and HeartDisease.
A very notable correlation between both Exercise Anginas and HeartDisease.
We notice that N and Y have the same correlation but one is positive and one is negative.
A similar thing happens with slope down and slope flat.
</font>
fig=px.histogram(data,
x="HeartDisease",
color="Sex",
hover_data=data.columns,
title="Heart Disease for Males and Females",
barmode="group")
fig.write_image("Graphs/histogram.png", format="png", width=800, height=600, scale=2)
fig.show()
We notice something very quickly here.
There seems to be a lot more males than females in this graph.
That throws off the accuracy of what we are trying to see.
It would be difficult to get a clear picture when there are just so many more males than females.
Lets take a look at how many more males there are.
To do this we make the x variable look at Sex instead of HeartDisease
</font>
fig=px.histogram(data,
x="Sex",
hover_data=data.columns,
title="Count for Males and Females",
barmode="group")
fig.show()
import plotly.express as px
fig = px.histogram(data,
x="Sex",
color="HeartDisease",
hover_data=data.columns,
title="Distribution of Heart Diseases for Male and Females",
barmode="group")
# Define the base font size that will be scaled according to the image size
base_font_size = 20
# Set the width and height directly within the figure using update_layout
fig.update_layout(width=980, height=560)
# Calculate the scale factor based on the desired image size
scale_factor = min(fig['layout']['width'] / 980, fig['layout']['height'] / 560)
# Calculate the adjusted font size
adjusted_title_font_size = int(base_font_size * scale_factor)
adjusted_axis_label_font_size = int(base_font_size * 0.8 * scale_factor)
adjusted_legend_font_size = int(base_font_size * 0.8 * scale_factor)
# Increase the text size for the title, axis labels, and legend
fig.update_layout(title_font=dict(size=adjusted_title_font_size),
xaxis_title_font=dict(size=adjusted_axis_label_font_size),
yaxis_title_font=dict(size=adjusted_axis_label_font_size),
legend_font=dict(size=adjusted_legend_font_size))
fig.write_image("Graphs/histogramMTry3.png", format="png", width=2560, height=1440, scale=1)
fig.show()
Now this is very interesting, we see that the majority of Males tested had heart disease while the majority of females tested did not have heart disease.
It looks like men where significantly more likely to have heart disease.
If we assume that the data is collected when someone goes to the doctor we can come to interesting conclusions from this.
There are two things that may be true from this.
- Men may have a higher chance of getting Heart Disease.
and
- Men may be less inclined to go to the doctor until they are sure something is wrong, while women may be more willing to go to the
doctor at the first sign of something wrong.
-- This means that women may go in when they don't need to, while men only go in when they need to.
--- Which results in more false alarms from women and less false alarms from men.
---- There is something else in the dataset we can look at to get an idea of if this is the case.
To see if men only go when they are absolutely sure something is wrong we can look at the ChestPainType category.
If there is not a large amount of asymptomatic records from the men and a lot of asymptomatic records from the women then it
backs up the previous claim.
</font>
fig=px.histogram(data,
x="Sex",
color="ChestPainType",
hover_data=data.columns,
title="Distribution of Chest pains for males and females",
barmode="group")
fig.write_image("Graphs/histogramChest.png", format="png", width=800, height=600, scale=3)
fig.show()
I reject my hypothesis.
We see the complete opposite from what I previously guessed.
We see that the large majority of male records where asymptomatic, while the majority of female records was also asymptomatic,
but to a significantly smaller degree.
From this we can guess that the data is from a routine checkup and that men seem more inclined to go for said checkups.
We come to this conclusion because why would a man who has no symptoms go to the doctors.
But there is a problem with this conclusion again.
If this was just a sample of random people coming for a checkup, does that mean that the vast majority
of men suffer from heart disease?
It doesn't make much sense, or it's an extremely scary find.
There is more evidence to support that this may be the case.
If we look at the distribution of ages, we see that the majority of ages are within the mid-life stages.
Around the time that people generally start going for routine checkups.
We will use matplotlib to plot the data.
Let's create a box and whisker diagram to see how the data is distributed.
And a histogram to see the curve and distribution of the data.
</font>
import matplotlib.pyplot as plt
'''
---------------------------------------------------------------------------------------------------------------------------
We want to split the data into two groups.
Men and woman and study them seperately to see if there is a difference.
------
'''
menData = data[data['Sex'] == 'M']
femaleData = data[data['Sex'] == 'F']
def createPlot(data,gender):
sns.set(style="darkgrid") #Set the style of the graph using seaborn
f, (ax_box, ax_hist) = plt.subplots(2, sharex=True, gridspec_kw={"height_ratios": (.15, .85)}) #We want to plot two graphs on the same figure
sns.boxplot(data=data,x='Age', ax=ax_box) #First one is a box and whisker diagram
sns.histplot(data=data, x="Age", ax=ax_hist,kde=True) #Second one is a histogram
ax_box.set(xlabel='')
ax_box.set(title=gender)
plt.show()
createPlot(menData,'Men')
createPlot(femaleData,'Women')
print(f'''
Men records:
{menData['Age'].describe()}
''')
print(f'''
Females records:
{femaleData['Age'].describe()}
''')
Men records: count 564.000000 mean 53.102837 std 9.556603 min 28.000000 25% 46.000000 50% 54.000000 75% 59.000000 max 77.000000 Name: Age, dtype: float64 Females records: count 182.000000 mean 52.197802 std 9.339774 min 30.000000 25% 45.250000 50% 53.000000 75% 58.750000 max 76.000000 Name: Age, dtype: float64
Most of the records are from people in their 40s to 60s with not much variation between men and women.
This supports the concept that these are from regular checkups as most people would be going around that age.
But there is one more variable we can look at.
Let's look at the ExerciseAngina variable.
Which is simply if they had pain when they exercised.
</font>
fig=px.histogram(data,
x="ExerciseAngina",
color="ChestPainType",
hover_data=data.columns,
title="Distribution of Chest pains ExerciseAngina",
barmode="group")
fig.write_image("Graphs/histogramExercise1.png", format="png", width=800, height=600, scale=3)
fig.show()
fig=px.histogram(data,
x="ExerciseAngina",
color="HeartDisease",
hover_data=data.columns,
title="Heart disease based on exercise anigna",
barmode="group")
fig.write_image("Graphs/histogramExercise.png", format="png", width=800, height=600, scale=3)
fig.show()
It all makes sense now.
At first you think, how could people who experienced chest pains from exercise be asymptomatic.
It's because they ONLY experience chest pains from exercise.
Passively they don't feel much pain, so they say they don't have chest pain for the ChestPainType category.
But they do have chest pain when they exercise.
So what happens is that a man will go gym.
Do hardcore exercise.
Experience chest pains.
And then go to the doctor about it.
Doctor : "Why are you here"
Patient : "I had chest pains while exercising"
Doctor : Writes down Execise-induced-Angina , "Does your chest hurt at the moment?"
Patient : "No"
Doctor : Writes down asymptomatic.
But the data suggests that the stress from exercise could be an early warning sign of heart problems.
It's a shot in the dark but it could also explain why there are more men than women.
As women may be less likely to put themselves under that stress that level of physical stress.
</font>
fig=px.histogram(data,
x="ChestPainType",
color="HeartDisease",
hover_data=data.columns,
title="Distribution of Heart Diseases",
barmode="group")
fig.write_image("Graphs/histogramHeart2.jpg", format="jpg", width=800, height=600, scale=3)
fig.show()
An extremely interesting observation is that the people with chest pains typically don't seem to have heart disease.
But the people who don't have chest pains do seem to be the ones with heart disease.
I'm not a doctor and have little knowedge about this but I would definitely start asking questions along the lines of:
-Does heart disease maybe prevent circulation to your chest, resulting in potentially a lack of feeling there.
-Is chest pain caused by strong circulation, which isn't present with heart disease.
All I know is that this is something a researcher would be interested in.
Let's now compare ages to heart disease.
We can use a box and whisker for this.
</font>
fig = px.box(data,y="Age",x="HeartDisease",color="Sex",title=f"Distrubution of Age")
fig.write_image("Graphs/ageGraph.jpg", format="jpg", width=800, height=600, scale=3)
fig.show()
Unsuprisingly, the average age seems to be higher for people who have heart disease.
With no real difference between women and men.
This makes sense as your heart gets weaker and more damaged over time.
Let's take a look at the ECG variable next.
</font>
fig=px.histogram(data,
x="RestingECG",
color="HeartDisease",
hover_data=data.columns,
title="Heart Diseases by ECG",
barmode="group")
fig.show()
We see that the ECG doesn't seem to matter too much.
You can make a case that the there is always a higher chance of heart disease regradless.
But that's because there are more records with heart disease compared to records without heart disease.
It is however noticible that the ST category does seem to matter a little bit with a high concentration of positive heart diseases.
But it's not by much.
Especially since the majority of the data leans towards a normal ECG regardless.
Next we can look at cholesterol levels.
To visualise this we can look at scatterplots for people who have heart disease and people that don't
</font>
fig = px.box(data,y="Cholesterol",x="HeartDisease",color="HeartDisease",title=f"Distrubution of Age")
fig.write_image("Graphs/chol2.jpg", format="jpg", width=600, height=440, scale=1)
fig.show()
fig=px.histogram(data,
x="HeartDisease",
color="FastingBS",
hover_data=data.columns,
title="Fasting Blood Sugar vs Heart Disease",
barmode="group")
fig.show()
fig=px.histogram(data,
x="FastingBS",
color="HeartDisease",
hover_data=data.columns,
title="Heart Disease vs Fasting Blood Sugar",
barmode="group")
fig.show()
fig = px.box(data,y="MaxHR",x="HeartDisease",color="HeartDisease",title=f"Max Heart Rate and Heart Disease Scatterplot")
fig.write_image("Graphs/ageThingYes.jpg", format="jpg", width=800, height=600, scale=3)
fig.show()
fig = px.box(data,y="RestingBP",x="HeartDisease",color="HeartDisease",title=f"Resting Blood Pressure and Heart Disease Scatterplot")
fig.write_image("Graphs/bloodPresure.jpg", format="jpg", width=800, height=600, scale=3)
fig.show()
fig = px.box(data,y="Oldpeak",x="HeartDisease",color="HeartDisease",title=f"Oldpeak and Heart Disease Scatterplot")
fig.write_image("Graphs/bloodPresure123.jpg", format="jpg", width=800, height=600, scale=3)
fig.show()
Now it seems quite interesting.
When the oldpeak is 0 your chance of heart disease is suprisingly low.
But if your oldpeak is > 0 your chance of heart disease is significantly higher.
The last variable to check is the ST slope.
</font>
fig=px.histogram(data,
x="ST_Slope",
color="HeartDisease",
hover_data=data.columns,
title="Slope vs Heart Disease",
barmode="group")
fig.write_image("Graphs/bloodPresureslope.jpg", format="jpg", width=800, height=600, scale=3)
fig.show()
BIG FIND: If your ST_Slope is going up then you have a dramatically reduced chance of having heart disease.
But if it's flat or down then the opposite is true.
Let's see how the numerical data is grouped together with regards to heart disease.
Paying special attention to the distribution graphs going down the middle diagonally.
</font>
sns.pairplot(data, hue="HeartDisease")
<seaborn.axisgrid.PairGrid at 0x1b1017e63b0>
We see some definite distinctions here with Oldpeak, MaxHR, Age and FastingBS
Where they so grouping based on the outcome of the heart disease.
</font>
Image(filename='Images/grouping2.png')
We gained a lot from this data analysis.
-We found out that men are more likely to get heart disease.
-We found out that exercise is a good way to know if you could have heart disease.
-We found out that heart disease doesn't cause Chest pain passively.
-We found out that heart disease is more apparent in older people.
-We found out that an Oldpeak of > 0 increases your chance of having heart disease.
-We found out that a higher MaxHR lowers your chance of having heart disease.
</font>
👨💻 MODEL CREATION
¶The next thing we should do is to break the data into an X variable and a y variable.
The X variable is the independent varaible and the y variable is the dependent variable.
In this case the y varaible is out target. Which is HeartDisease.
For the sake of accuracy our y variable will be everything that isn't the target.
</font>
X = dataFrameOne.drop(['HeartDisease'],axis=1)
y = dataFrameOne['HeartDisease']
print(f'''
The shape of X is {X.shape} and the type is {type(X)}
The shape of y is {y.shape} and the type is {type(y)}
''')
The shape of X is (746, 19) and the type is <class 'pandas.core.frame.DataFrame'> The shape of y is (746,) and the type is <class 'pandas.core.series.Series'>
We see there are 746 records for both the X and y variables.
We see that the X variable has 19 rows while the y variable is flat.
The y variable is flat because it is a pandas series.
</font>
X.head()
Age | RestingBP | Cholesterol | FastingBS | MaxHR | Oldpeak | ChestPainType_ASY | ChestPainType_ATA | ChestPainType_NAP | ChestPainType_TA | RestingECG_LVH | RestingECG_Normal | RestingECG_ST | ExerciseAngina_N | ExerciseAngina_Y | ST_Slope_Down | ST_Slope_Flat | ST_Slope_Up | Sex_M | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 40 | 140.0 | 289.0 | 0 | 172 | 0.0 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 |
1 | 49 | 160.0 | 180.0 | 0 | 156 | 1.0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 |
2 | 37 | 130.0 | 283.0 | 0 | 98 | 0.0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 |
3 | 48 | 138.0 | 214.0 | 0 | 108 | 1.5 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
4 | 54 | 150.0 | 195.0 | 0 | 122 | 0.0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 |
y.head()
0 0 1 1 2 0 3 1 4 0 Name: HeartDisease, dtype: int8
Looks good.
Let's scale down the numerical data.
This will help us to build a model that is more accurate and faster.
It will take all the numbers and scale them down to a range of 0 to 1.
For this we will use sklearn's MinMaxScaler and we will only scale the relevant columns.
</font>
scaler = MinMaxScaler()
X[num_cols] = scaler.fit_transform(X[num_cols])
print(f'''
The columns affected will be {num_cols}''')
X.head()
The columns affected will be ['Age', 'RestingBP', 'Cholesterol', 'MaxHR', 'Oldpeak']
Age | RestingBP | Cholesterol | FastingBS | MaxHR | Oldpeak | ChestPainType_ASY | ChestPainType_ATA | ChestPainType_NAP | ChestPainType_TA | RestingECG_LVH | RestingECG_Normal | RestingECG_ST | ExerciseAngina_N | ExerciseAngina_Y | ST_Slope_Down | ST_Slope_Flat | ST_Slope_Up | Sex_M | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 0.244898 | 0.444444 | 0.393822 | 0 | 0.774436 | 0.015871 | 0 | 1 | 0 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 |
1 | 0.428571 | 0.629630 | 0.183398 | 0 | 0.654135 | 0.174622 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 0 | 0 |
2 | 0.183673 | 0.351852 | 0.382239 | 0 | 0.218045 | 0.015871 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 1 | 1 |
3 | 0.408163 | 0.425926 | 0.249035 | 0 | 0.293233 | 0.253997 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 |
4 | 0.530612 | 0.537037 | 0.212355 | 0 | 0.398496 | 0.015871 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 |
Looks like it all went well.
Let's visualise what happened. Let's look at age before and after being scaled.
</font>
'''
BEFORE BEING SCALED:
'''
plt.figure(figsize=(10,5))
sns.histplot(data['Age'],kde=True)
<AxesSubplot:xlabel='Age', ylabel='Count'>
'''
AFTER IT WAS SCALED:
'''
plt.figure(figsize=(10,5))
sns.histplot(X['Age'],kde=True)
<AxesSubplot:xlabel='Age', ylabel='Count'>
We see that the distribution of the data has not changed at all. <-- Important to note. Instead what has happened it that the scale of the X axis has been changed from being between 30 and 70 To being between 0 and 1.
The next step is to split the data into a training set and a test set. We will NOT train the data using any of the testing data.
We will use the sklearn library to import the train_test_split function. Which will automatically breakup our data. For now we will use 80% training set and 20% test set. And a random state of 42 to keep it consistent.
We are also not going to work with any scaled data. The reason is that we are going to use a pipeline to scale the data anyway. So this let's us analyse unscaled data but build the model using scaled data automatically.
</font>
X = dataFrameOne.drop(['HeartDisease'],axis=1)
y = dataFrameOne['HeartDisease']
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state=42)
X_train.describe()
Age | RestingBP | Cholesterol | FastingBS | MaxHR | Oldpeak | ChestPainType_ASY | ChestPainType_ATA | ChestPainType_NAP | ChestPainType_TA | RestingECG_LVH | RestingECG_Normal | RestingECG_ST | ExerciseAngina_N | ExerciseAngina_Y | ST_Slope_Down | ST_Slope_Flat | ST_Slope_Up | Sex_M | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
count | 596.000000 | 596.000000 | 596.000000 | 596.000000 | 596.000000 | 596.000000 | 596.000000 | 596.000000 | 596.000000 | 596.000000 | 596.000000 | 596.000000 | 596.000000 | 596.000000 | 596.000000 | 596.000000 | 596.000000 | 596.000000 | 596.000000 |
mean | 52.837248 | 132.741611 | 245.050336 | 0.157718 | 140.256711 | 0.905273 | 0.498322 | 0.226510 | 0.224832 | 0.050336 | 0.231544 | 0.607383 | 0.161074 | 0.622483 | 0.377517 | 0.052013 | 0.476510 | 0.471477 | 0.750000 |
std | 9.425445 | 17.095688 | 58.728495 | 0.364783 | 24.552182 | 1.062500 | 0.500417 | 0.418924 | 0.417822 | 0.218820 | 0.422173 | 0.488743 | 0.367908 | 0.485173 | 0.485173 | 0.222241 | 0.499867 | 0.499605 | 0.433376 |
min | 29.000000 | 92.000000 | 85.000000 | 0.000000 | 69.000000 | -0.099976 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 |
25% | 46.000000 | 120.000000 | 208.750000 | 0.000000 | 122.750000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.750000 |
50% | 54.000000 | 130.000000 | 236.500000 | 0.000000 | 140.000000 | 0.500000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 1.000000 | 0.000000 | 1.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 1.000000 |
75% | 59.000000 | 140.000000 | 275.000000 | 0.000000 | 160.000000 | 1.500000 | 1.000000 | 0.000000 | 0.000000 | 0.000000 | 0.000000 | 1.000000 | 0.000000 | 1.000000 | 1.000000 | 0.000000 | 1.000000 | 1.000000 | 1.000000 |
max | 77.000000 | 200.000000 | 603.000000 | 1.000000 | 202.000000 | 5.601562 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.000000 |
We see that 80% of the data has gone into the X_train and y_train variables. The remaining 20% will be in the X_test and y_test variables.
Let's first take a look at the random forest classification model.
First we import the nessicary classes. For this we will need the RandomForestClassifier method and the make_pipeline method. The pipeline will scale our data before training and testing the model.
</font>
ignoreWarnings()
rf_pipe = make_pipeline(scaler, RandomForestClassifier(n_estimators=4)) #We use 4 trees
rf_pipe.fit(X_train, y_train) #We fit the model
outputs = cross_val_score(rf_pipe, X_train, y_train, cv=5, scoring='accuracy') #We get outputs
averageScore_rf = outputs.mean() #We get the average score
y_pred = rf_pipe.predict(X_test) #We get the predictions
print(outputs)
print(f'The average score was {averageScore_rf}')
print(classification_report(y_test, y_pred))
plot_confusion_matrix(rf_pipe, X_test, y_test)
plt.grid(False)
plt.title('Random Forest Classifier before hyper parameters')
[0.83333333 0.8487395 0.79831933 0.76470588 0.81512605] The average score was 0.8120448179271709 precision recall f1-score support 0 0.79 0.93 0.85 71 1 0.92 0.77 0.84 79 accuracy 0.85 150 macro avg 0.85 0.85 0.85 150 weighted avg 0.86 0.85 0.85 150
Text(0.5, 1.0, 'Random Forest Classifier before hyper parameters')
#Number of trees
n_estimators = [int(x) for x in np.linspace(start = 10, stop = 80, num = 10)]
#Number of features to consider at every split
max_features = ['auto', 'sqrt']
#Maximum number of levels in tree
max_depth = [2,4]
#Minimum number of samples required to split a node
min_sample_split = [2, 5]
#Minimum number of samples required at each leaf node
min_sample_leaf = [1, 2]
#Method of selecting samples for training each tree
bootstrap = [True, False]
param_grid = [{'n_estimators': n_estimators,
'max_features': max_features,
'max_depth': max_depth,
'min_samples_split': min_sample_split,
'min_samples_leaf': min_sample_leaf,
'bootstrap': bootstrap}]
print(param_grid)
[{'n_estimators': [10, 17, 25, 33, 41, 48, 56, 64, 72, 80], 'max_features': ['auto', 'sqrt'], 'max_depth': [2, 4], 'min_samples_split': [2, 5], 'min_samples_leaf': [1, 2], 'bootstrap': [True, False]}]
rf_Grid = GridSearchCV(estimator = RandomForestClassifier(), param_grid = param_grid, cv = 5, n_jobs = 4, verbose = 2)#
rf_Grid.fit(X_train, y_train)
bestParams = rf_Grid.best_params_
print(f'''
n_estimators: {bestParams["n_estimators"]}
min_samples_split: {bestParams["min_samples_split"]}
min_samples_leaf: {bestParams["min_samples_leaf"]}
max_features: {bestParams["max_features"]}
max_depth: {bestParams["max_depth"]}
bootstrap: {bestParams["bootstrap"]}''')
Fitting 5 folds for each of 320 candidates, totalling 1600 fits n_estimators: 56 min_samples_split: 5 min_samples_leaf: 2 max_features: sqrt max_depth: 4 bootstrap: False
rf_pipe = make_pipeline(scaler, RandomForestClassifier(n_estimators=bestParams['n_estimators'], max_features=bestParams['max_features'], max_depth=bestParams['max_depth'], min_samples_split=bestParams['min_samples_split'], min_samples_leaf=bestParams['min_samples_leaf'], bootstrap=bestParams['bootstrap']))
rf_pipe.fit(X_train, y_train)
averageScore_rf = cross_val_score(rf_pipe, X_train, y_train, cv=5, scoring='accuracy')
print(averageScore_rf)
print(averageScore_rf.mean())
y_pred = rf_pipe.predict(X_test)
finalAccuracy_rf = accuracy_score(y_test, y_pred)
print(finalAccuracy_rf)
[0.81666667 0.85714286 0.87394958 0.80672269 0.86554622] 0.8440056022408964 0.9
print(classification_report(y_test, y_pred))
plot_confusion_matrix(rf_pipe, X_test, y_test)
plt.grid(False)
plt.title('Random Forest Classifier')
precision recall f1-score support 0 0.89 0.90 0.90 71 1 0.91 0.90 0.90 79 accuracy 0.90 150 macro avg 0.90 0.90 0.90 150 weighted avg 0.90 0.90 0.90 150
Text(0.5, 1.0, 'Random Forest Classifier')
The model scored very well across the board and the confusion matrix shows 63 correct falses and 70 correct trues. (During my testing) There were however 6 cases where the model said the person did NOT have heart disease when they actually did. This is significantly better than the 15 before hyper parameters. However, this incorrect prediction could have costed them their lives. So this model is to be taken with a grain of salt.
</font>
def featureImportance(model,label):
feature_col_tree = X.columns.to_list()
X_train_scaled = scaler.fit_transform(X_train)
model.fit(X_train_scaled, y_train)
plt.figure(figsize=(20,15))
importance = model.feature_importances_
idxs = np.argsort(importance)
plt.title("Feature Importance")
plt.barh(range(len(idxs)),importance[idxs],align="center")
plt.yticks(range(len(idxs)),[feature_col_tree[i] for i in idxs])
plt.xlabel(label)
plt.show()
model = RandomForestClassifier(n_estimators=bestParams['n_estimators'], max_features=bestParams['max_features'], max_depth=bestParams['max_depth'], min_samples_split=bestParams['min_samples_split'], min_samples_leaf=bestParams['min_samples_leaf'], bootstrap=bestParams['bootstrap'])
featureImportance(model, "Feature Importance for Random Forest Classifier")
Looks like the slope variables are the most important. (Except ST_Slope_Down) It's interesting to look at these variables and see if our data analysis was correct. So far it looks like it was.
</font>
nb_pipe = make_pipeline(scaler, GaussianNB(var_smoothing=50))
nb_pipe.fit(X_train, y_train) #We fit the model
outputs = cross_val_score(nb_pipe, X_train, y_train, cv=5, scoring='accuracy') #We get outputs
averageScore = outputs.mean() #We get the average score
print(outputs)
print(f'The average score was {averageScore}')
y_pred = nb_pipe.predict(X_test) #We get the predictions
print(classification_report(y_test, y_pred))
plot_confusion_matrix(nb_pipe, X_test, y_test)
plt.grid(False)
[0.61666667 0.54621849 0.58823529 0.6302521 0.6302521 ] The average score was 0.6023249299719888 precision recall f1-score support 0 0.52 1.00 0.69 71 1 1.00 0.18 0.30 79 accuracy 0.57 150 macro avg 0.76 0.59 0.49 150 weighted avg 0.77 0.57 0.48 150
#Widens or smooths the curve of the Gaussian distribution
var_smoothing = np.logspace(0,-9, num=100)
param_grid = [{'var_smoothing': var_smoothing}]
Nb_grid = GridSearchCV(estimator = GaussianNB(), param_grid = param_grid, cv = 5, n_jobs = 4, verbose = 2)#
Nb_grid.fit(X_train, y_train)
bestParams = Nb_grid.best_params_
print(f'''
Smoothing: {bestParams["var_smoothing"]}
''')
Fitting 5 folds for each of 100 candidates, totalling 500 fits Smoothing: 2.310129700083158e-05
nb_pipe = make_pipeline(scaler, GaussianNB(var_smoothing=bestParams['var_smoothing']))
nb_pipe.fit(X_train, y_train)
averageScore_nb = cross_val_score(nb_pipe, X_train, y_train, cv=5, scoring='accuracy')
print(averageScore_nb)
print(averageScore_nb.mean())
y_pred = nb_pipe.predict(X_test)
finalAccuracy_nb = accuracy_score(y_test, y_pred)
print(finalAccuracy_nb)
[0.84166667 0.8487395 0.86554622 0.80672269 0.84033613] 0.8406022408963585 0.8666666666666667
print(classification_report(y_test, y_pred))
plot_confusion_matrix(nb_pipe, X_test, y_test)
plt.grid(False)
plt.title('Naive bayes')
precision recall f1-score support 0 0.85 0.87 0.86 71 1 0.88 0.86 0.87 79 accuracy 0.87 150 macro avg 0.87 0.87 0.87 150 weighted avg 0.87 0.87 0.87 150
Text(0.5, 1.0, 'Naive bayes')
The model is pretty good. But not as good as the Random Forest model.
</font>
knn_pipe = make_pipeline(scaler, KNeighborsClassifier(n_neighbors=2))
knn_pipe.fit(X_train, y_train) #We fit the model
outputs = cross_val_score(knn_pipe, X_train, y_train, cv=5, scoring='accuracy') #We get outputs
averageScore = outputs.mean() #We get the average score
print(outputs)
print(f'The average score was {averageScore}')
[0.81666667 0.77310924 0.79831933 0.78151261 0.84033613] The average score was 0.8019887955182072
#Leaf size passed to BallTree or KDTree.
leaf_size = np.logspace(0,-9, num=100)
#Number of neighbors to use.
n_neighbors = np.arange(1,22,step=2)
'''
uniform : uniform weights. All points in each neighborhood are weighted equally.
distance : weight points by the inverse of their distance. in this case, closer neighbors of a query point will have a greater influence than neighbors which are further away.
weights = ['uniform', 'distance'] <-- We are going to leave these out because they take an hour to process
---------------------------------------------------------------------------------------------------------------------------
Algorithm used to compute the nearest neighbors
algorithm = ['auto', 'ball_tree', 'kd_tree', 'brute'] <-- We are going to leave these out because they take an hour to process
'''
p = [1,2]
param_grid = [{'p': p, 'leaf_size': leaf_size, 'n_neighbors': n_neighbors}]
print(param_grid)
[{'p': [1, 2], 'leaf_size': array([1.00000000e+00, 8.11130831e-01, 6.57933225e-01, 5.33669923e-01, 4.32876128e-01, 3.51119173e-01, 2.84803587e-01, 2.31012970e-01, 1.87381742e-01, 1.51991108e-01, 1.23284674e-01, 1.00000000e-01, 8.11130831e-02, 6.57933225e-02, 5.33669923e-02, 4.32876128e-02, 3.51119173e-02, 2.84803587e-02, 2.31012970e-02, 1.87381742e-02, 1.51991108e-02, 1.23284674e-02, 1.00000000e-02, 8.11130831e-03, 6.57933225e-03, 5.33669923e-03, 4.32876128e-03, 3.51119173e-03, 2.84803587e-03, 2.31012970e-03, 1.87381742e-03, 1.51991108e-03, 1.23284674e-03, 1.00000000e-03, 8.11130831e-04, 6.57933225e-04, 5.33669923e-04, 4.32876128e-04, 3.51119173e-04, 2.84803587e-04, 2.31012970e-04, 1.87381742e-04, 1.51991108e-04, 1.23284674e-04, 1.00000000e-04, 8.11130831e-05, 6.57933225e-05, 5.33669923e-05, 4.32876128e-05, 3.51119173e-05, 2.84803587e-05, 2.31012970e-05, 1.87381742e-05, 1.51991108e-05, 1.23284674e-05, 1.00000000e-05, 8.11130831e-06, 6.57933225e-06, 5.33669923e-06, 4.32876128e-06, 3.51119173e-06, 2.84803587e-06, 2.31012970e-06, 1.87381742e-06, 1.51991108e-06, 1.23284674e-06, 1.00000000e-06, 8.11130831e-07, 6.57933225e-07, 5.33669923e-07, 4.32876128e-07, 3.51119173e-07, 2.84803587e-07, 2.31012970e-07, 1.87381742e-07, 1.51991108e-07, 1.23284674e-07, 1.00000000e-07, 8.11130831e-08, 6.57933225e-08, 5.33669923e-08, 4.32876128e-08, 3.51119173e-08, 2.84803587e-08, 2.31012970e-08, 1.87381742e-08, 1.51991108e-08, 1.23284674e-08, 1.00000000e-08, 8.11130831e-09, 6.57933225e-09, 5.33669923e-09, 4.32876128e-09, 3.51119173e-09, 2.84803587e-09, 2.31012970e-09, 1.87381742e-09, 1.51991108e-09, 1.23284674e-09, 1.00000000e-09]), 'n_neighbors': array([ 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21])}]
knn_grid = GridSearchCV(estimator = KNeighborsClassifier(), param_grid = param_grid, cv = 5, n_jobs = 4, verbose = 2)#
knn_grid.fit(X_train, y_train)
bestParams = knn_grid.best_params_
print(f'''
p: {bestParams["p"]}
leaf_size: {bestParams["leaf_size"]}
n_neighbors: {bestParams["n_neighbors"]}
''')
Fitting 5 folds for each of 2200 candidates, totalling 11000 fits p: 1 leaf_size: 1.0 n_neighbors: 17
knn_pipe = make_pipeline(scaler, KNeighborsClassifier(p=bestParams['p'], leaf_size=bestParams['leaf_size'], n_neighbors=bestParams['n_neighbors']))
knn_pipe.fit(X_train, y_train)
averageScore_knn = cross_val_score(knn_pipe, X_train, y_train, cv=5, scoring='accuracy').mean()
print(averageScore_knn)
0.8489775910364145
y_pred = knn_pipe.predict(X_test)
finalAccuracy_knn = accuracy_score(y_test, y_pred)
print(classification_report(y_test, y_pred))
plot_confusion_matrix(knn_pipe, X_test, y_test)
plt.grid(False)
plt.title('K-nearest Neighbour')
precision recall f1-score support 0 0.88 0.89 0.88 71 1 0.90 0.89 0.89 79 accuracy 0.89 150 macro avg 0.89 0.89 0.89 150 weighted avg 0.89 0.89 0.89 150
Text(0.5, 1.0, 'K-nearest Neighbour')
svc_pipe = make_pipeline(scaler, svm.SVC(C=20))
svc_pipe.fit(X_train, y_train) #We fit the model
outputs = cross_val_score(svc_pipe, X_train, y_train, cv=5, scoring='accuracy') #We get outputs
averageScore = outputs.mean() #We get the average score
print(outputs)
print(f'The average score was {averageScore}')
[0.825 0.84033613 0.8487395 0.74789916 0.87394958] The average score was 0.8271848739495798
#Regularization parameter. The strength of the regularization is inversely proportional to C.
C = [0.1, 1, 10, 100, 1000]
#Kernel coefficient for ‘rbf’, ‘poly’ and ‘sigmoid’
gamma = [1, 0.1, 0.01, 0.001, 0.0001]
#Specifies the kernel type to be used in the algorithm.
kernel = ['rbf']
param_grid = [{'C': C, 'gamma': gamma, 'kernel': kernel}]
print(param_grid)
[{'C': [0.1, 1, 10, 100, 1000], 'gamma': [1, 0.1, 0.01, 0.001, 0.0001], 'kernel': ['rbf']}]
svc_grid = GridSearchCV(estimator = svm.SVC(), param_grid = param_grid, cv = 5, n_jobs = 4, verbose = 2)#
svc_grid.fit(X_train, y_train)
bestParams = svc_grid.best_params_
print(f'''
C: {bestParams["C"]}
gamma: {bestParams["gamma"]}
kernel: {bestParams["kernel"]}
''')
Fitting 5 folds for each of 25 candidates, totalling 125 fits C: 100 gamma: 0.0001 kernel: rbf
svc_pipe = make_pipeline(scaler, svm.SVC(C=bestParams['C'], gamma=bestParams['gamma'], kernel=bestParams['kernel']))
svc_pipe.fit(X_train, y_train)
averageScore_svc = cross_val_score(svc_pipe, X_train, y_train, cv=5, scoring='accuracy').mean()
print(averageScore_svc)
0.8456442577030812
y_pred = svc_pipe.predict(X_test)
finalAccuracy_svc = accuracy_score(y_test, y_pred)
print(classification_report(y_test, y_pred))
plot_confusion_matrix(svc_pipe, X_test, y_test)
plt.grid(False)
plt.title('SVC')
precision recall f1-score support 0 0.90 0.89 0.89 71 1 0.90 0.91 0.91 79 accuracy 0.90 150 macro avg 0.90 0.90 0.90 150 weighted avg 0.90 0.90 0.90 150
Text(0.5, 1.0, 'SVC')
dt_pipe = make_pipeline(scaler, DecisionTreeClassifier())
dt_pipe.fit(X_train, y_train) #We fit the model
outputs = cross_val_score(dt_pipe, X_train, y_train, cv=5, scoring='accuracy') #We get outputs
averageScore = outputs.mean() #We get the average score
print(outputs)
print(f'The average score was {averageScore}')
[0.78333333 0.77310924 0.83193277 0.68907563 0.77310924] The average score was 0.770112044817927
#The maximum number of nodes the tree can have. The by limiting the nodes you can prevent overfitting.
max_depth = np.arange(1,200,step=10)
param_grid = [{'max_depth': max_depth}]
print(param_grid)
[{'max_depth': array([ 1, 11, 21, 31, 41, 51, 61, 71, 81, 91, 101, 111, 121, 131, 141, 151, 161, 171, 181, 191])}]
dt_grid = GridSearchCV(estimator = DecisionTreeClassifier(), param_grid = param_grid, cv = 5, n_jobs = 4, verbose = 2)#
dt_grid.fit(X_train, y_train)
bestParams = dt_grid.best_params_
print(f'''
max_depth: {bestParams["max_depth"]}
''')
Fitting 5 folds for each of 20 candidates, totalling 100 fits max_depth: 1
dt_pipe = make_pipeline(scaler, DecisionTreeClassifier(max_depth=bestParams['max_depth']))
dt_pipe.fit(X_train, y_train)
averageScore_dt = cross_val_score(dt_pipe, X_train, y_train, cv=5, scoring='accuracy').mean()
print(averageScore_dt)
0.8154621848739495
y_pred = dt_pipe.predict(X_test)
finalAccuracy_dt = accuracy_score(y_test, y_pred)
print(classification_report(y_test, y_pred))
plot_confusion_matrix(dt_pipe, X_test, y_test)
plt.grid(False)
plt.title('DT')
precision recall f1-score support 0 0.87 0.83 0.85 71 1 0.85 0.89 0.87 79 accuracy 0.86 150 macro avg 0.86 0.86 0.86 150 weighted avg 0.86 0.86 0.86 150
Text(0.5, 1.0, 'DT')
print(f'''
Random Forest Average Accuracy {round(averageScore_rf.mean(),3)}
Naive Bayes Average Accuracy {round(averageScore.mean(),3)}
K-nearest Neighbour Average Accuracy {round(averageScore_knn.mean(),3)}
SVC Average Accuracy {round(averageScore_svc.mean(),3)}
Decision Tree Average Accuracy {round(averageScore_dt.mean(),3)}
---------------------------------------------------------------------------------------------------------------------------
Random Forest Final Accuracy {round(finalAccuracy_rf.mean(),3)}
Naive Bayes Final Accuracy {round(finalAccuracy_nb.mean(),3)}
K-nearest Neighbour Final Accuracy {round(finalAccuracy_knn.mean(),3)}
SVC Final Accuracy {round(finalAccuracy_svc.mean(),3)}
Decision Tree Final Accuracy {round(finalAccuracy_dt.mean(),3)}
''')
Random Forest Average Accuracy 0.844 Naive Bayes Average Accuracy 0.77 K-nearest Neighbour Average Accuracy 0.849 SVC Average Accuracy 0.846 Decision Tree Average Accuracy 0.815 --------------------------------------------------------------------------------------------------------------------------- Random Forest Final Accuracy 0.9 Naive Bayes Final Accuracy 0.867 K-nearest Neighbour Final Accuracy 0.887 SVC Final Accuracy 0.9 Decision Tree Final Accuracy 0.86
From my testing the SVC model and Random Forest model both performed the best
</font>
👨💻 ADVANCED MODEL CREATION 👨💻
¶class DropNull(BaseEstimator, TransformerMixin):
def __init__(self):
pass
def fit(self, X, y=None):
return self
def transform(self, X, y=None):
return X.dropna()
def oneHotEncodeSexDef(x):
if x == 'M':
return 1
else:
return 0
class oneHotEncodeSex(BaseEstimator, TransformerMixin):
def __init__(self):
pass
def fit(self, X, y=None):
return self
def transform(self, X, y=None):
X['Sex'] = X['Sex'].apply(oneHotEncodeSexDef)
#Convert to int8
X['Sex'] = X['Sex'].astype('uint8')
return X
class getDummyValues(BaseEstimator, TransformerMixin):
def __init__(self):
pass
def fit(self, X, y=None):
return self
def transform(self, X, y=None):
catColumns = X.select_dtypes(include=['object']).columns
X_withDummies = pd.get_dummies(X, columns=catColumns)
return X_withDummies
class convertTargetToUint8(BaseEstimator, TransformerMixin):
def __init__(self,target):
self.target = target
def fit(self, X, y=None):
return self
def transform(self, X, y=None):
X[self.target] = X[self.target].astype('uint8')
return X
df = pd.read_csv('Csv Files/heart.csv')
df = df.dropna()
pipeline = make_pipeline(DropNull(),oneHotEncodeSex(),getDummyValues(),convertTargetToUint8('HeartDisease'))
newDf = pipeline.fit_transform(df)
#Get all columns that aren't int8
nonInt8Columns = newDf.select_dtypes(exclude=['uint8']).columns
scaler = MinMaxScaler()
newDf[nonInt8Columns] = scaler.fit_transform(newDf[nonInt8Columns])
ignoreWarnings()
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, r2_score, roc_auc_score, precision_score, recall_score, f1_score
import pandas as pd
#Import SVC
models = [RandomForestClassifier(), LogisticRegression(), KNeighborsClassifier(),
DecisionTreeClassifier(), GradientBoostingClassifier(),
CatBoostClassifier(logging_level='Silent'), XGBClassifier(logging_level='Silent'),
LGBMClassifier(logging_level='Silent'), AdaBoostClassifier(), SVC(probability=True)] # Make sure SVC has probability=True
def getScores(model, X, y):
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3)
model.fit(X_train, y_train)
# If the model supports 'predict_proba', use it; otherwise, use 'decision_function'
if hasattr(model, 'predict_proba'):
y_pred_probs = model.predict_proba(X_test)[:, 1]
else:
y_pred_probs = model.decision_function(X_test)
y_pred = model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
r2 = r2_score(y_test, y_pred)
roc_auc = roc_auc_score(y_test, y_pred_probs)
precision_0 = precision_score(y_test, y_pred, pos_label=0)
precision_1 = precision_score(y_test, y_pred, pos_label=1)
recall_0 = recall_score(y_test, y_pred, pos_label=0)
recall_1 = recall_score(y_test, y_pred, pos_label=1)
f1 = f1_score(y_test, y_pred)
return accuracy, r2, roc_auc, precision_0, precision_1, recall_0, recall_1, f1, model
diction = {
'Model': [],
'Accuracy': [],
'R2': [],
'ROC_AUC': [],
'Precision_0': [],
'Precision_1': [],
'Recall_0': [],
'Recall_1': [],
'F1_Score': [],
'Combined': []
}
for _ in range(5):
for model in models:
accuracy, r2, roc_auc, precision_0, precision_1, recall_0, recall_1, f1, model = getScores(model, newDf.drop('HeartDisease', axis=1), newDf['HeartDisease'])
diction['Model'].append(model.__class__.__name__)
diction['Accuracy'].append(accuracy)
diction['R2'].append(r2)
diction['ROC_AUC'].append(roc_auc)
diction['Precision_0'].append(precision_0)
diction['Precision_1'].append(precision_1)
diction['Recall_0'].append(recall_0)
diction['Recall_1'].append(recall_1)
diction['F1_Score'].append(f1)
diction['Combined'].append(accuracy + r2 + roc_auc)
reportDataframe = pd.DataFrame(diction)
reportDataframe_avg = reportDataframe.groupby('Model').mean().reset_index()
[17:02:14] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.5.1/src/learner.cc:576: Parameters: { "logging_level" } might not be used. This could be a false alarm, with some parameters getting used by language bindings but then being mistakenly passed down to XGBoost core, or some parameter actually being used but getting flagged wrongly here. Please open an issue if you find any such cases. [17:02:14] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.5.1/src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior. [LightGBM] [Warning] Unknown parameter: logging_level [17:02:17] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.5.1/src/learner.cc:576: Parameters: { "logging_level" } might not be used. This could be a false alarm, with some parameters getting used by language bindings but then being mistakenly passed down to XGBoost core, or some parameter actually being used but getting flagged wrongly here. Please open an issue if you find any such cases. [17:02:17] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.5.1/src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior. [LightGBM] [Warning] Unknown parameter: logging_level [17:02:20] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.5.1/src/learner.cc:576: Parameters: { "logging_level" } might not be used. This could be a false alarm, with some parameters getting used by language bindings but then being mistakenly passed down to XGBoost core, or some parameter actually being used but getting flagged wrongly here. Please open an issue if you find any such cases. [17:02:20] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.5.1/src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior. [LightGBM] [Warning] Unknown parameter: logging_level [17:02:23] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.5.1/src/learner.cc:576: Parameters: { "logging_level" } might not be used. This could be a false alarm, with some parameters getting used by language bindings but then being mistakenly passed down to XGBoost core, or some parameter actually being used but getting flagged wrongly here. Please open an issue if you find any such cases. [17:02:23] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.5.1/src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior. [LightGBM] [Warning] Unknown parameter: logging_level [17:02:26] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.5.1/src/learner.cc:576: Parameters: { "logging_level" } might not be used. This could be a false alarm, with some parameters getting used by language bindings but then being mistakenly passed down to XGBoost core, or some parameter actually being used but getting flagged wrongly here. Please open an issue if you find any such cases. [17:02:26] WARNING: C:/Users/Administrator/workspace/xgboost-win64_release_1.5.1/src/learner.cc:1115: Starting in XGBoost 1.3.0, the default evaluation metric used with the objective 'binary:logistic' was changed from 'error' to 'logloss'. Explicitly set eval_metric if you'd like to restore the old behavior. [LightGBM] [Warning] Unknown parameter: logging_level
reportDataframe_avg
Model | Accuracy | R2 | ROC_AUC | Precision_0 | Precision_1 | Recall_0 | Recall_1 | F1_Score | Combined | |
---|---|---|---|---|---|---|---|---|---|---|
0 | AdaBoostClassifier | 0.844203 | 0.363101 | 0.895747 | 0.813062 | 0.869904 | 0.836951 | 0.852486 | 0.860289 | 2.103051 |
1 | CatBoostClassifier | 0.871014 | 0.479102 | 0.928439 | 0.886278 | 0.859523 | 0.821965 | 0.912277 | 0.884981 | 2.278555 |
2 | DecisionTreeClassifier | 0.778261 | 0.104285 | 0.775538 | 0.761031 | 0.791487 | 0.750958 | 0.800118 | 0.795749 | 1.658084 |
3 | GradientBoostingClassifier | 0.864493 | 0.454700 | 0.913440 | 0.869289 | 0.860686 | 0.839215 | 0.888558 | 0.873890 | 2.232632 |
4 | KNeighborsClassifier | 0.844928 | 0.372714 | 0.893223 | 0.856162 | 0.837617 | 0.788858 | 0.890710 | 0.863131 | 2.110864 |
5 | LGBMClassifier | 0.850725 | 0.393741 | 0.919019 | 0.868074 | 0.839663 | 0.782238 | 0.904987 | 0.870794 | 2.163485 |
6 | LogisticRegression | 0.857246 | 0.421611 | 0.918213 | 0.856110 | 0.858444 | 0.818133 | 0.888800 | 0.873150 | 2.197071 |
7 | RandomForestClassifier | 0.875362 | 0.494111 | 0.929173 | 0.886300 | 0.868222 | 0.824404 | 0.915136 | 0.890899 | 2.298647 |
8 | SVC | 0.850725 | 0.398919 | 0.909574 | 0.859239 | 0.845717 | 0.812591 | 0.884547 | 0.864025 | 2.159218 |
9 | XGBClassifier | 0.852899 | 0.403050 | 0.919731 | 0.852965 | 0.852273 | 0.810437 | 0.887019 | 0.869151 | 2.175679 |
Catboost Hyperparams
¶X = newDf.drop('HeartDisease', axis=1)
y= newDf['HeartDisease']
def objective(trial):
# Define the hyperparameter search space
params = {
"iterations": trial.suggest_int("iterations", 100, 1000),
"learning_rate": trial.suggest_loguniform("learning_rate", 0.01, 0.3),
"depth": trial.suggest_int("depth", 1, 10),
"l2_leaf_reg": trial.suggest_loguniform("l2_leaf_reg", 1e-9, 100),
}
# Split the data into train and validation sets
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42)
# Create and train the CatBoostClassifier with the suggested hyperparameters
model = CatBoostClassifier(**params, logging_level='Silent')
model.fit(X_train, y_train, eval_set=(X_val, y_val), early_stopping_rounds=50)
# Calculate the evaluation metric to optimize (e.g., accuracy)
accuracy = model.score(X_val, y_val)
return accuracy
# Create a study object and optimize the objective function
study = optuna.create_study(direction="maximize") # We want to maximize the accuracy
study.optimize(objective, n_trials=100)
# Get the best hyperparameters and their corresponding score
best_params = study.best_params
best_score = study.best_value
print("Best Hyperparameters:", best_params)
print("Best Score (Accuracy):", best_score)
[I 2023-07-31 17:02:27,104] A new study created in memory with name: no-name-abebc860-8a15-4d8d-96ad-e888367936d4 [I 2023-07-31 17:02:27,657] Trial 0 finished with value: 0.8695652173913043 and parameters: {'iterations': 720, 'learning_rate': 0.050381864384337456, 'depth': 8, 'l2_leaf_reg': 5.151473047597851e-07}. Best is trial 0 with value: 0.8695652173913043. [I 2023-07-31 17:02:27,991] Trial 1 finished with value: 0.8804347826086957 and parameters: {'iterations': 110, 'learning_rate': 0.03617318272961226, 'depth': 5, 'l2_leaf_reg': 0.0007484340383610256}. Best is trial 1 with value: 0.8804347826086957. [I 2023-07-31 17:02:28,615] Trial 2 finished with value: 0.8695652173913043 and parameters: {'iterations': 965, 'learning_rate': 0.037167782087731735, 'depth': 1, 'l2_leaf_reg': 0.08798915824701616}. Best is trial 1 with value: 0.8804347826086957. [I 2023-07-31 17:02:28,932] Trial 3 finished with value: 0.8532608695652174 and parameters: {'iterations': 773, 'learning_rate': 0.2502008442552998, 'depth': 4, 'l2_leaf_reg': 0.0007137869576294317}. Best is trial 1 with value: 0.8804347826086957. [I 2023-07-31 17:02:29,299] Trial 4 finished with value: 0.8804347826086957 and parameters: {'iterations': 416, 'learning_rate': 0.14183007124859565, 'depth': 3, 'l2_leaf_reg': 0.6047562568765807}. Best is trial 1 with value: 0.8804347826086957. [I 2023-07-31 17:02:30,690] Trial 5 finished with value: 0.8532608695652174 and parameters: {'iterations': 377, 'learning_rate': 0.09545565729388585, 'depth': 10, 'l2_leaf_reg': 1.9658234904549985}. Best is trial 1 with value: 0.8804347826086957. [I 2023-07-31 17:02:31,919] Trial 6 finished with value: 0.8804347826086957 and parameters: {'iterations': 812, 'learning_rate': 0.024446611806116087, 'depth': 10, 'l2_leaf_reg': 2.354108322999452e-09}. Best is trial 1 with value: 0.8804347826086957. [I 2023-07-31 17:02:32,758] Trial 7 finished with value: 0.8478260869565217 and parameters: {'iterations': 415, 'learning_rate': 0.2093015578985169, 'depth': 10, 'l2_leaf_reg': 1.6551430557340853e-05}. Best is trial 1 with value: 0.8804347826086957. [I 2023-07-31 17:02:33,192] Trial 8 finished with value: 0.8586956521739131 and parameters: {'iterations': 633, 'learning_rate': 0.04954537403490409, 'depth': 5, 'l2_leaf_reg': 0.001169520097757618}. Best is trial 1 with value: 0.8804347826086957. [I 2023-07-31 17:02:33,826] Trial 9 finished with value: 0.8695652173913043 and parameters: {'iterations': 821, 'learning_rate': 0.014413248573597574, 'depth': 4, 'l2_leaf_reg': 1.989396359806507e-05}. Best is trial 1 with value: 0.8804347826086957. [I 2023-07-31 17:02:34,376] Trial 10 finished with value: 0.8097826086956522 and parameters: {'iterations': 114, 'learning_rate': 0.010284110030639435, 'depth': 7, 'l2_leaf_reg': 70.69087678688591}. Best is trial 1 with value: 0.8804347826086957. [I 2023-07-31 17:02:34,850] Trial 11 finished with value: 0.8804347826086957 and parameters: {'iterations': 111, 'learning_rate': 0.10024326571467933, 'depth': 2, 'l2_leaf_reg': 0.060867670593894634}. Best is trial 1 with value: 0.8804347826086957. [I 2023-07-31 17:02:35,333] Trial 12 finished with value: 0.8804347826086957 and parameters: {'iterations': 297, 'learning_rate': 0.0937193560833953, 'depth': 3, 'l2_leaf_reg': 0.042057532866867864}. Best is trial 1 with value: 0.8804347826086957. [I 2023-07-31 17:02:36,153] Trial 13 finished with value: 0.875 and parameters: {'iterations': 252, 'learning_rate': 0.025874758112120397, 'depth': 6, 'l2_leaf_reg': 60.407811936359444}. Best is trial 1 with value: 0.8804347826086957. [I 2023-07-31 17:02:36,632] Trial 14 finished with value: 0.8858695652173914 and parameters: {'iterations': 534, 'learning_rate': 0.12173143764258439, 'depth': 3, 'l2_leaf_reg': 1.1218630866415618}. Best is trial 14 with value: 0.8858695652173914. [I 2023-07-31 17:02:37,041] Trial 15 finished with value: 0.8695652173913043 and parameters: {'iterations': 602, 'learning_rate': 0.06355224205329012, 'depth': 5, 'l2_leaf_reg': 0.0025706998046741954}. Best is trial 14 with value: 0.8858695652173914. [I 2023-07-31 17:02:37,407] Trial 16 finished with value: 0.8695652173913043 and parameters: {'iterations': 501, 'learning_rate': 0.167428025249983, 'depth': 1, 'l2_leaf_reg': 3.4703745649555042}. Best is trial 14 with value: 0.8858695652173914. [I 2023-07-31 17:02:37,875] Trial 17 finished with value: 0.8369565217391305 and parameters: {'iterations': 230, 'learning_rate': 0.2775399783405939, 'depth': 7, 'l2_leaf_reg': 0.012410964461532522}. Best is trial 14 with value: 0.8858695652173914. [I 2023-07-31 17:02:38,290] Trial 18 finished with value: 0.8913043478260869 and parameters: {'iterations': 967, 'learning_rate': 0.07427830244092323, 'depth': 3, 'l2_leaf_reg': 0.8688202452346111}. Best is trial 18 with value: 0.8913043478260869. [I 2023-07-31 17:02:38,683] Trial 19 finished with value: 0.8858695652173914 and parameters: {'iterations': 993, 'learning_rate': 0.1429821749489193, 'depth': 3, 'l2_leaf_reg': 5.930838234148949}. Best is trial 18 with value: 0.8913043478260869. [I 2023-07-31 17:02:39,150] Trial 20 finished with value: 0.8695652173913043 and parameters: {'iterations': 515, 'learning_rate': 0.07578469640513263, 'depth': 4, 'l2_leaf_reg': 0.4050728081262723}. Best is trial 18 with value: 0.8913043478260869. [I 2023-07-31 17:02:39,532] Trial 21 finished with value: 0.875 and parameters: {'iterations': 986, 'learning_rate': 0.1158284001477013, 'depth': 2, 'l2_leaf_reg': 13.943759004413947}. Best is trial 18 with value: 0.8913043478260869. [I 2023-07-31 17:02:39,932] Trial 22 finished with value: 0.8804347826086957 and parameters: {'iterations': 934, 'learning_rate': 0.15371794521427318, 'depth': 3, 'l2_leaf_reg': 6.07683268503343}. Best is trial 18 with value: 0.8913043478260869. [I 2023-07-31 17:02:40,357] Trial 23 finished with value: 0.8804347826086957 and parameters: {'iterations': 877, 'learning_rate': 0.1260235811283461, 'depth': 2, 'l2_leaf_reg': 0.43777825390752234}. Best is trial 18 with value: 0.8913043478260869. [I 2023-07-31 17:02:40,924] Trial 24 finished with value: 0.8913043478260869 and parameters: {'iterations': 713, 'learning_rate': 0.18582319405312353, 'depth': 3, 'l2_leaf_reg': 10.79238542072001}. Best is trial 18 with value: 0.8913043478260869. [I 2023-07-31 17:02:41,634] Trial 25 finished with value: 0.875 and parameters: {'iterations': 678, 'learning_rate': 0.19291144684880132, 'depth': 2, 'l2_leaf_reg': 67.67960525343503}. Best is trial 18 with value: 0.8913043478260869. [I 2023-07-31 17:02:41,999] Trial 26 finished with value: 0.8695652173913043 and parameters: {'iterations': 575, 'learning_rate': 0.2085567229758612, 'depth': 4, 'l2_leaf_reg': 0.1916747029142371}. Best is trial 18 with value: 0.8913043478260869. [I 2023-07-31 17:02:42,482] Trial 27 finished with value: 0.875 and parameters: {'iterations': 719, 'learning_rate': 0.08233502457839208, 'depth': 3, 'l2_leaf_reg': 1.892659490009807}. Best is trial 18 with value: 0.8913043478260869. [I 2023-07-31 17:02:42,957] Trial 28 finished with value: 0.8695652173913043 and parameters: {'iterations': 878, 'learning_rate': 0.12319113053091636, 'depth': 1, 'l2_leaf_reg': 16.218551591901566}. Best is trial 18 with value: 0.8913043478260869. [I 2023-07-31 17:02:43,424] Trial 29 finished with value: 0.8586956521739131 and parameters: {'iterations': 701, 'learning_rate': 0.2997007806161126, 'depth': 6, 'l2_leaf_reg': 0.01404928853193876}. Best is trial 18 with value: 0.8913043478260869. [I 2023-07-31 17:02:44,075] Trial 30 finished with value: 0.8641304347826086 and parameters: {'iterations': 487, 'learning_rate': 0.0685865847289507, 'depth': 8, 'l2_leaf_reg': 0.25307904581626883}. Best is trial 18 with value: 0.8913043478260869. [I 2023-07-31 17:02:44,440] Trial 31 finished with value: 0.8804347826086957 and parameters: {'iterations': 904, 'learning_rate': 0.16479163204263067, 'depth': 3, 'l2_leaf_reg': 1.7914159006802375}. Best is trial 18 with value: 0.8913043478260869. [I 2023-07-31 17:02:44,909] Trial 32 finished with value: 0.8858695652173914 and parameters: {'iterations': 774, 'learning_rate': 0.11408024141781611, 'depth': 2, 'l2_leaf_reg': 12.601294332324153}. Best is trial 18 with value: 0.8913043478260869. [I 2023-07-31 17:02:45,315] Trial 33 finished with value: 0.8913043478260869 and parameters: {'iterations': 968, 'learning_rate': 0.1421276178148207, 'depth': 4, 'l2_leaf_reg': 1.0112584477856226}. Best is trial 18 with value: 0.8913043478260869. [I 2023-07-31 17:02:45,697] Trial 34 finished with value: 0.8695652173913043 and parameters: {'iterations': 634, 'learning_rate': 0.23177833324150218, 'depth': 4, 'l2_leaf_reg': 0.8585371374393903}. Best is trial 18 with value: 0.8913043478260869. [I 2023-07-31 17:02:46,099] Trial 35 finished with value: 0.8641304347826086 and parameters: {'iterations': 805, 'learning_rate': 0.18359086258607013, 'depth': 5, 'l2_leaf_reg': 0.11793175825303852}. Best is trial 18 with value: 0.8913043478260869. [I 2023-07-31 17:02:46,566] Trial 36 finished with value: 0.8967391304347826 and parameters: {'iterations': 948, 'learning_rate': 0.08571922524005526, 'depth': 4, 'l2_leaf_reg': 1.1794757772097515}. Best is trial 36 with value: 0.8967391304347826. [I 2023-07-31 17:02:47,050] Trial 37 finished with value: 0.875 and parameters: {'iterations': 925, 'learning_rate': 0.09028172031536459, 'depth': 5, 'l2_leaf_reg': 25.59237154005505}. Best is trial 36 with value: 0.8967391304347826. [I 2023-07-31 17:02:47,701] Trial 38 finished with value: 0.875 and parameters: {'iterations': 858, 'learning_rate': 0.055230082301699186, 'depth': 4, 'l2_leaf_reg': 4.391014296416849}. Best is trial 36 with value: 0.8967391304347826. [I 2023-07-31 17:02:48,166] Trial 39 finished with value: 0.8478260869565217 and parameters: {'iterations': 952, 'learning_rate': 0.14626290759326055, 'depth': 6, 'l2_leaf_reg': 0.029381734416077752}. Best is trial 36 with value: 0.8967391304347826. [I 2023-07-31 17:02:48,617] Trial 40 finished with value: 0.8641304347826086 and parameters: {'iterations': 747, 'learning_rate': 0.08191903810600422, 'depth': 4, 'l2_leaf_reg': 0.13060130733498798}. Best is trial 36 with value: 0.8967391304347826. [I 2023-07-31 17:02:49,075] Trial 41 finished with value: 0.8804347826086957 and parameters: {'iterations': 843, 'learning_rate': 0.10359497705055605, 'depth': 3, 'l2_leaf_reg': 0.6124268727079343}. Best is trial 36 with value: 0.8967391304347826. [I 2023-07-31 17:02:49,582] Trial 42 finished with value: 0.8804347826086957 and parameters: {'iterations': 943, 'learning_rate': 0.13506645914979368, 'depth': 4, 'l2_leaf_reg': 1.2045450790934749}. Best is trial 36 with value: 0.8967391304347826. [I 2023-07-31 17:02:50,265] Trial 43 finished with value: 0.8913043478260869 and parameters: {'iterations': 1000, 'learning_rate': 0.10340879985980185, 'depth': 5, 'l2_leaf_reg': 1.6965621141671228}. Best is trial 36 with value: 0.8967391304347826. [I 2023-07-31 17:02:50,832] Trial 44 finished with value: 0.8641304347826086 and parameters: {'iterations': 988, 'learning_rate': 0.1024018658068596, 'depth': 5, 'l2_leaf_reg': 94.90537728272331}. Best is trial 36 with value: 0.8967391304347826. [I 2023-07-31 17:02:51,349] Trial 45 finished with value: 0.875 and parameters: {'iterations': 903, 'learning_rate': 0.07553747304583262, 'depth': 5, 'l2_leaf_reg': 5.777070470119603}. Best is trial 36 with value: 0.8967391304347826. [I 2023-07-31 17:02:51,715] Trial 46 finished with value: 0.8695652173913043 and parameters: {'iterations': 999, 'learning_rate': 0.23423713373140104, 'depth': 6, 'l2_leaf_reg': 0.08116877208123857}. Best is trial 36 with value: 0.8967391304347826. [I 2023-07-31 17:02:52,400] Trial 47 finished with value: 0.8858695652173914 and parameters: {'iterations': 778, 'learning_rate': 0.1716538671974615, 'depth': 7, 'l2_leaf_reg': 27.134745590039664}. Best is trial 36 with value: 0.8967391304347826. [I 2023-07-31 17:02:52,965] Trial 48 finished with value: 0.8804347826086957 and parameters: {'iterations': 827, 'learning_rate': 0.05995545269274146, 'depth': 4, 'l2_leaf_reg': 2.5570419427468694}. Best is trial 36 with value: 0.8967391304347826. [I 2023-07-31 17:02:53,566] Trial 49 finished with value: 0.8913043478260869 and parameters: {'iterations': 904, 'learning_rate': 0.04888501057749291, 'depth': 3, 'l2_leaf_reg': 0.3748424802157774}. Best is trial 36 with value: 0.8967391304347826. [I 2023-07-31 17:02:53,964] Trial 50 finished with value: 0.8641304347826086 and parameters: {'iterations': 961, 'learning_rate': 0.10854298989206887, 'depth': 5, 'l2_leaf_reg': 0.003435414062991254}. Best is trial 36 with value: 0.8967391304347826. [I 2023-07-31 17:02:54,509] Trial 51 finished with value: 0.8804347826086957 and parameters: {'iterations': 905, 'learning_rate': 0.04768865865797106, 'depth': 2, 'l2_leaf_reg': 0.339202093154479}. Best is trial 36 with value: 0.8967391304347826. [I 2023-07-31 17:02:54,983] Trial 52 finished with value: 0.8804347826086957 and parameters: {'iterations': 948, 'learning_rate': 0.09024637380835622, 'depth': 3, 'l2_leaf_reg': 1.1566311843897192}. Best is trial 36 with value: 0.8967391304347826. [I 2023-07-31 17:02:55,431] Trial 53 finished with value: 0.875 and parameters: {'iterations': 860, 'learning_rate': 0.048750108603786285, 'depth': 4, 'l2_leaf_reg': 7.5119707378343294}. Best is trial 36 with value: 0.8967391304347826. [I 2023-07-31 17:02:55,900] Trial 54 finished with value: 0.8858695652173914 and parameters: {'iterations': 904, 'learning_rate': 0.06500095625505824, 'depth': 3, 'l2_leaf_reg': 2.4451060668930764}. Best is trial 36 with value: 0.8967391304347826. [I 2023-07-31 17:02:56,458] Trial 55 finished with value: 0.8804347826086957 and parameters: {'iterations': 970, 'learning_rate': 0.043050023460006005, 'depth': 4, 'l2_leaf_reg': 0.5549419806994629}. Best is trial 36 with value: 0.8967391304347826. [I 2023-07-31 17:02:56,831] Trial 56 finished with value: 0.8641304347826086 and parameters: {'iterations': 923, 'learning_rate': 0.13332298015255745, 'depth': 3, 'l2_leaf_reg': 0.22597180806766298}. Best is trial 36 with value: 0.8967391304347826. [I 2023-07-31 17:02:57,415] Trial 57 finished with value: 0.8695652173913043 and parameters: {'iterations': 802, 'learning_rate': 0.07126608380032318, 'depth': 1, 'l2_leaf_reg': 31.178077093472634}. Best is trial 36 with value: 0.8967391304347826. [I 2023-07-31 17:02:57,862] Trial 58 finished with value: 0.8858695652173914 and parameters: {'iterations': 883, 'learning_rate': 0.059093892158079406, 'depth': 2, 'l2_leaf_reg': 0.043821357301471416}. Best is trial 36 with value: 0.8967391304347826. [I 2023-07-31 17:02:58,928] Trial 59 finished with value: 0.8913043478260869 and parameters: {'iterations': 969, 'learning_rate': 0.09423316185286316, 'depth': 9, 'l2_leaf_reg': 9.728327772374502}. Best is trial 36 with value: 0.8967391304347826. [I 2023-07-31 17:02:59,365] Trial 60 finished with value: 0.8695652173913043 and parameters: {'iterations': 674, 'learning_rate': 0.1532152777460022, 'depth': 5, 'l2_leaf_reg': 3.7232336284225744}. Best is trial 36 with value: 0.8967391304347826. [I 2023-07-31 17:03:00,584] Trial 61 finished with value: 0.875 and parameters: {'iterations': 959, 'learning_rate': 0.09335970974782513, 'depth': 9, 'l2_leaf_reg': 11.672233322334005}. Best is trial 36 with value: 0.8967391304347826. [I 2023-07-31 17:03:01,400] Trial 62 finished with value: 0.8858695652173914 and parameters: {'iterations': 996, 'learning_rate': 0.08275274821270846, 'depth': 9, 'l2_leaf_reg': 0.9178349420129056}. Best is trial 36 with value: 0.8967391304347826. [I 2023-07-31 17:03:03,277] Trial 63 finished with value: 0.8804347826086957 and parameters: {'iterations': 963, 'learning_rate': 0.10940757227689599, 'depth': 10, 'l2_leaf_reg': 32.43534414086198}. Best is trial 36 with value: 0.8967391304347826. [I 2023-07-31 17:03:03,649] Trial 64 finished with value: 0.8858695652173914 and parameters: {'iterations': 923, 'learning_rate': 0.12803781426221583, 'depth': 3, 'l2_leaf_reg': 7.614617210892237}. Best is trial 36 with value: 0.8967391304347826. [I 2023-07-31 17:03:04,149] Trial 65 finished with value: 0.8695652173913043 and parameters: {'iterations': 843, 'learning_rate': 0.06938702826254287, 'depth': 4, 'l2_leaf_reg': 2.566032542430117}. Best is trial 36 with value: 0.8967391304347826. [I 2023-07-31 17:03:04,675] Trial 66 finished with value: 0.8586956521739131 and parameters: {'iterations': 879, 'learning_rate': 0.07899556937946309, 'depth': 7, 'l2_leaf_reg': 0.5645877896374343}. Best is trial 36 with value: 0.8967391304347826. [I 2023-07-31 17:03:05,383] Trial 67 finished with value: 0.8586956521739131 and parameters: {'iterations': 472, 'learning_rate': 0.11622368731266561, 'depth': 9, 'l2_leaf_reg': 0.21228589875368217}. Best is trial 36 with value: 0.8967391304347826. [I 2023-07-31 17:03:05,849] Trial 68 finished with value: 0.8804347826086957 and parameters: {'iterations': 971, 'learning_rate': 0.09396339275713758, 'depth': 3, 'l2_leaf_reg': 1.6016955298951792}. Best is trial 36 with value: 0.8967391304347826. [I 2023-07-31 17:03:06,224] Trial 69 finished with value: 0.8641304347826086 and parameters: {'iterations': 930, 'learning_rate': 0.14347165278254825, 'depth': 2, 'l2_leaf_reg': 14.441473246246849}. Best is trial 36 with value: 0.8967391304347826. [I 2023-07-31 17:03:06,657] Trial 70 finished with value: 0.8804347826086957 and parameters: {'iterations': 877, 'learning_rate': 0.10270498353337358, 'depth': 4, 'l2_leaf_reg': 46.28593128687329}. Best is trial 36 with value: 0.8967391304347826. [I 2023-07-31 17:03:07,116] Trial 71 finished with value: 0.8913043478260869 and parameters: {'iterations': 609, 'learning_rate': 0.12348676287188651, 'depth': 3, 'l2_leaf_reg': 4.297064540931493}. Best is trial 36 with value: 0.8967391304347826. [I 2023-07-31 17:03:07,525] Trial 72 finished with value: 0.8858695652173914 and parameters: {'iterations': 635, 'learning_rate': 0.1218569053916226, 'depth': 3, 'l2_leaf_reg': 4.110182790129383}. Best is trial 36 with value: 0.8967391304347826. [I 2023-07-31 17:03:07,983] Trial 73 finished with value: 0.8695652173913043 and parameters: {'iterations': 563, 'learning_rate': 0.08734673476970886, 'depth': 2, 'l2_leaf_reg': 13.234228627570866}. Best is trial 36 with value: 0.8967391304347826. [I 2023-07-31 17:03:08,416] Trial 74 finished with value: 0.8858695652173914 and parameters: {'iterations': 733, 'learning_rate': 0.1601337884759598, 'depth': 3, 'l2_leaf_reg': 98.75626688857913}. Best is trial 36 with value: 0.8967391304347826. [I 2023-07-31 17:03:09,059] Trial 75 finished with value: 0.8641304347826086 and parameters: {'iterations': 382, 'learning_rate': 0.0969872253618672, 'depth': 8, 'l2_leaf_reg': 1.1130917051680325}. Best is trial 36 with value: 0.8967391304347826. [I 2023-07-31 17:03:09,448] Trial 76 finished with value: 0.8858695652173914 and parameters: {'iterations': 595, 'learning_rate': 0.1932466111079506, 'depth': 4, 'l2_leaf_reg': 0.38104812931947085}. Best is trial 36 with value: 0.8967391304347826. [I 2023-07-31 17:03:09,941] Trial 77 finished with value: 0.8913043478260869 and parameters: {'iterations': 975, 'learning_rate': 0.13243916399447808, 'depth': 5, 'l2_leaf_reg': 6.991274116765668}. Best is trial 36 with value: 0.8967391304347826. [I 2023-07-31 17:03:10,457] Trial 78 finished with value: 0.8804347826086957 and parameters: {'iterations': 667, 'learning_rate': 0.07417129531660105, 'depth': 4, 'l2_leaf_reg': 0.12506795046647565}. Best is trial 36 with value: 0.8967391304347826. [I 2023-07-31 17:03:11,049] Trial 79 finished with value: 0.8586956521739131 and parameters: {'iterations': 152, 'learning_rate': 0.11565388933732236, 'depth': 3, 'l2_leaf_reg': 1.9199321313811486}. Best is trial 36 with value: 0.8967391304347826. [I 2023-07-31 17:03:11,709] Trial 80 finished with value: 0.8913043478260869 and parameters: {'iterations': 938, 'learning_rate': 0.08301878971654222, 'depth': 3, 'l2_leaf_reg': 0.7038669785754722}. Best is trial 36 with value: 0.8967391304347826. [I 2023-07-31 17:03:12,132] Trial 81 finished with value: 0.9021739130434783 and parameters: {'iterations': 993, 'learning_rate': 0.1360622710958461, 'depth': 5, 'l2_leaf_reg': 6.605911256918625}. Best is trial 81 with value: 0.9021739130434783. [I 2023-07-31 17:03:12,599] Trial 82 finished with value: 0.875 and parameters: {'iterations': 994, 'learning_rate': 0.14703526139738243, 'depth': 6, 'l2_leaf_reg': 3.5554198999571374}. Best is trial 81 with value: 0.9021739130434783. [I 2023-07-31 17:03:13,132] Trial 83 finished with value: 0.907608695652174 and parameters: {'iterations': 909, 'learning_rate': 0.10795847719199778, 'depth': 5, 'l2_leaf_reg': 17.512176033781234}. Best is trial 83 with value: 0.907608695652174. [I 2023-07-31 17:03:13,658] Trial 84 finished with value: 0.8913043478260869 and parameters: {'iterations': 907, 'learning_rate': 0.10200397008354779, 'depth': 5, 'l2_leaf_reg': 56.22689660961723}. Best is trial 83 with value: 0.907608695652174. [I 2023-07-31 17:03:14,081] Trial 85 finished with value: 0.8858695652173914 and parameters: {'iterations': 946, 'learning_rate': 0.17196873387141953, 'depth': 6, 'l2_leaf_reg': 23.89254521086023}. Best is trial 83 with value: 0.907608695652174. [I 2023-07-31 17:03:14,574] Trial 86 finished with value: 0.8967391304347826 and parameters: {'iterations': 980, 'learning_rate': 0.11192128894408956, 'depth': 5, 'l2_leaf_reg': 8.278519853917414}. Best is trial 83 with value: 0.907608695652174. [I 2023-07-31 17:03:15,065] Trial 87 finished with value: 0.875 and parameters: {'iterations': 856, 'learning_rate': 0.13830183201382548, 'depth': 5, 'l2_leaf_reg': 17.493667913952578}. Best is trial 83 with value: 0.907608695652174. [I 2023-07-31 17:03:15,456] Trial 88 finished with value: 0.8804347826086957 and parameters: {'iterations': 1000, 'learning_rate': 0.10683363219695703, 'depth': 5, 'l2_leaf_reg': 1.4565370578132621}. Best is trial 83 with value: 0.907608695652174. [I 2023-07-31 17:03:15,974] Trial 89 finished with value: 0.8804347826086957 and parameters: {'iterations': 893, 'learning_rate': 0.1571627183631364, 'depth': 6, 'l2_leaf_reg': 0.3286758441762458}. Best is trial 83 with value: 0.907608695652174. [I 2023-07-31 17:03:16,499] Trial 90 finished with value: 0.8804347826086957 and parameters: {'iterations': 917, 'learning_rate': 0.11287770740622029, 'depth': 5, 'l2_leaf_reg': 44.72714161156781}. Best is trial 83 with value: 0.907608695652174. [I 2023-07-31 17:03:16,957] Trial 91 finished with value: 0.8858695652173914 and parameters: {'iterations': 979, 'learning_rate': 0.08798029473651599, 'depth': 4, 'l2_leaf_reg': 11.029682660358176}. Best is trial 83 with value: 0.907608695652174. [I 2023-07-31 17:03:17,432] Trial 92 finished with value: 0.8858695652173914 and parameters: {'iterations': 947, 'learning_rate': 0.09438268707898557, 'depth': 5, 'l2_leaf_reg': 8.024781833084779}. Best is trial 83 with value: 0.907608695652174. [I 2023-07-31 17:03:17,965] Trial 93 finished with value: 0.8913043478260869 and parameters: {'iterations': 972, 'learning_rate': 0.07676498490956776, 'depth': 6, 'l2_leaf_reg': 2.3442536449882745}. Best is trial 83 with value: 0.907608695652174. [I 2023-07-31 17:03:18,383] Trial 94 finished with value: 0.875 and parameters: {'iterations': 934, 'learning_rate': 0.1303227056743962, 'depth': 4, 'l2_leaf_reg': 19.733282643787774}. Best is trial 83 with value: 0.907608695652174. [I 2023-07-31 17:03:18,891] Trial 95 finished with value: 0.8967391304347826 and parameters: {'iterations': 827, 'learning_rate': 0.10156112258880623, 'depth': 5, 'l2_leaf_reg': 5.914929117741083}. Best is trial 83 with value: 0.907608695652174. [I 2023-07-31 17:03:19,390] Trial 96 finished with value: 0.875 and parameters: {'iterations': 823, 'learning_rate': 0.11645898965230396, 'depth': 5, 'l2_leaf_reg': 0.9041390784780495}. Best is trial 83 with value: 0.907608695652174. [I 2023-07-31 17:03:20,090] Trial 97 finished with value: 0.8913043478260869 and parameters: {'iterations': 864, 'learning_rate': 0.10063801319750412, 'depth': 6, 'l2_leaf_reg': 5.931838853480844}. Best is trial 83 with value: 0.907608695652174. [I 2023-07-31 17:03:20,676] Trial 98 finished with value: 0.8858695652173914 and parameters: {'iterations': 803, 'learning_rate': 0.06633498859337436, 'depth': 4, 'l2_leaf_reg': 3.8495433098228706}. Best is trial 83 with value: 0.907608695652174. [I 2023-07-31 17:03:21,441] Trial 99 finished with value: 0.8478260869565217 and parameters: {'iterations': 891, 'learning_rate': 0.13941933213851848, 'depth': 5, 'l2_leaf_reg': 0.5455303153380975}. Best is trial 83 with value: 0.907608695652174.
Best Hyperparameters: {'iterations': 909, 'learning_rate': 0.10795847719199778, 'depth': 5, 'l2_leaf_reg': 17.512176033781234} Best Score (Accuracy): 0.907608695652174
RandomForest Hyperparams
¶X = newDf.drop('HeartDisease', axis=1)
y = newDf['HeartDisease']
def objective(trial):
# Define the hyperparameter search space
params = {
"n_estimators": trial.suggest_int("n_estimators", 100, 1000),
"max_depth": trial.suggest_int("max_depth", 1, 32),
"min_samples_split": trial.suggest_int("min_samples_split", 2, 20),
"min_samples_leaf": trial.suggest_int("min_samples_leaf", 1, 20),
"max_features": trial.suggest_categorical("max_features", ["auto", "sqrt", "log2"]),
}
# Split the data into train and validation sets
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42)
# Create and train the RandomForestClassifier with the suggested hyperparameters
model = RandomForestClassifier(**params)
model.fit(X_train, y_train)
# Calculate the evaluation metric to optimize (e.g., accuracy)
accuracy = model.score(X_val, y_val)
return accuracy
# Create a study object and optimize the objective function
study = optuna.create_study(direction="maximize") # We want to maximize the accuracy
study.optimize(objective, n_trials=100)
# Get the best hyperparameters and their corresponding score
best_params = study.best_params
best_score = study.best_value
print("Best Hyperparameters:", best_params)
print("Best Score (Accuracy):", best_score)
[I 2023-07-31 17:03:21,459] A new study created in memory with name: no-name-29b35ff8-363c-477e-833e-87d49712e778 [I 2023-07-31 17:03:21,810] Trial 0 finished with value: 0.8586956521739131 and parameters: {'n_estimators': 274, 'max_depth': 24, 'min_samples_split': 7, 'min_samples_leaf': 9, 'max_features': 'auto'}. Best is trial 0 with value: 0.8586956521739131. [I 2023-07-31 17:03:22,618] Trial 1 finished with value: 0.8478260869565217 and parameters: {'n_estimators': 800, 'max_depth': 15, 'min_samples_split': 3, 'min_samples_leaf': 18, 'max_features': 'auto'}. Best is trial 0 with value: 0.8586956521739131. [I 2023-07-31 17:03:23,560] Trial 2 finished with value: 0.8695652173913043 and parameters: {'n_estimators': 822, 'max_depth': 32, 'min_samples_split': 10, 'min_samples_leaf': 5, 'max_features': 'log2'}. Best is trial 2 with value: 0.8695652173913043. [I 2023-07-31 17:03:24,216] Trial 3 finished with value: 0.8369565217391305 and parameters: {'n_estimators': 684, 'max_depth': 2, 'min_samples_split': 6, 'min_samples_leaf': 10, 'max_features': 'sqrt'}. Best is trial 2 with value: 0.8695652173913043. [I 2023-07-31 17:03:24,643] Trial 4 finished with value: 0.8532608695652174 and parameters: {'n_estimators': 389, 'max_depth': 31, 'min_samples_split': 12, 'min_samples_leaf': 15, 'max_features': 'log2'}. Best is trial 2 with value: 0.8695652173913043. [I 2023-07-31 17:03:25,525] Trial 5 finished with value: 0.8586956521739131 and parameters: {'n_estimators': 874, 'max_depth': 20, 'min_samples_split': 7, 'min_samples_leaf': 13, 'max_features': 'sqrt'}. Best is trial 2 with value: 0.8695652173913043. [I 2023-07-31 17:03:26,149] Trial 6 finished with value: 0.8369565217391305 and parameters: {'n_estimators': 675, 'max_depth': 2, 'min_samples_split': 15, 'min_samples_leaf': 9, 'max_features': 'log2'}. Best is trial 2 with value: 0.8695652173913043. [I 2023-07-31 17:03:26,520] Trial 7 finished with value: 0.8804347826086957 and parameters: {'n_estimators': 331, 'max_depth': 9, 'min_samples_split': 11, 'min_samples_leaf': 4, 'max_features': 'sqrt'}. Best is trial 7 with value: 0.8804347826086957. [I 2023-07-31 17:03:27,068] Trial 8 finished with value: 0.8532608695652174 and parameters: {'n_estimators': 561, 'max_depth': 4, 'min_samples_split': 17, 'min_samples_leaf': 6, 'max_features': 'sqrt'}. Best is trial 7 with value: 0.8804347826086957. [I 2023-07-31 17:03:27,772] Trial 9 finished with value: 0.8641304347826086 and parameters: {'n_estimators': 667, 'max_depth': 26, 'min_samples_split': 5, 'min_samples_leaf': 6, 'max_features': 'log2'}. Best is trial 7 with value: 0.8804347826086957. [I 2023-07-31 17:03:27,923] Trial 10 finished with value: 0.875 and parameters: {'n_estimators': 113, 'max_depth': 10, 'min_samples_split': 19, 'min_samples_leaf': 1, 'max_features': 'sqrt'}. Best is trial 7 with value: 0.8804347826086957. [I 2023-07-31 17:03:28,074] Trial 11 finished with value: 0.8858695652173914 and parameters: {'n_estimators': 118, 'max_depth': 10, 'min_samples_split': 20, 'min_samples_leaf': 1, 'max_features': 'sqrt'}. Best is trial 11 with value: 0.8858695652173914. [I 2023-07-31 17:03:28,205] Trial 12 finished with value: 0.8804347826086957 and parameters: {'n_estimators': 105, 'max_depth': 10, 'min_samples_split': 13, 'min_samples_leaf': 1, 'max_features': 'sqrt'}. Best is trial 11 with value: 0.8858695652173914. [I 2023-07-31 17:03:28,553] Trial 13 finished with value: 0.8695652173913043 and parameters: {'n_estimators': 312, 'max_depth': 9, 'min_samples_split': 20, 'min_samples_leaf': 3, 'max_features': 'sqrt'}. Best is trial 11 with value: 0.8858695652173914. [I 2023-07-31 17:03:28,826] Trial 14 finished with value: 0.8641304347826086 and parameters: {'n_estimators': 231, 'max_depth': 15, 'min_samples_split': 10, 'min_samples_leaf': 4, 'max_features': 'sqrt'}. Best is trial 11 with value: 0.8858695652173914. [I 2023-07-31 17:03:29,294] Trial 15 finished with value: 0.8695652173913043 and parameters: {'n_estimators': 450, 'max_depth': 6, 'min_samples_split': 15, 'min_samples_leaf': 1, 'max_features': 'sqrt'}. Best is trial 11 with value: 0.8858695652173914. [I 2023-07-31 17:03:29,518] Trial 16 finished with value: 0.8641304347826086 and parameters: {'n_estimators': 191, 'max_depth': 12, 'min_samples_split': 9, 'min_samples_leaf': 7, 'max_features': 'auto'}. Best is trial 11 with value: 0.8858695652173914. [I 2023-07-31 17:03:29,987] Trial 17 finished with value: 0.875 and parameters: {'n_estimators': 402, 'max_depth': 20, 'min_samples_split': 14, 'min_samples_leaf': 3, 'max_features': 'sqrt'}. Best is trial 11 with value: 0.8858695652173914. [I 2023-07-31 17:03:31,002] Trial 18 finished with value: 0.8586956521739131 and parameters: {'n_estimators': 992, 'max_depth': 6, 'min_samples_split': 17, 'min_samples_leaf': 13, 'max_features': 'sqrt'}. Best is trial 11 with value: 0.8858695652173914. [I 2023-07-31 17:03:31,611] Trial 19 finished with value: 0.8586956521739131 and parameters: {'n_estimators': 525, 'max_depth': 18, 'min_samples_split': 17, 'min_samples_leaf': 8, 'max_features': 'auto'}. Best is trial 11 with value: 0.8858695652173914. [I 2023-07-31 17:03:31,837] Trial 20 finished with value: 0.8695652173913043 and parameters: {'n_estimators': 194, 'max_depth': 13, 'min_samples_split': 2, 'min_samples_leaf': 3, 'max_features': 'sqrt'}. Best is trial 11 with value: 0.8858695652173914. [I 2023-07-31 17:03:31,977] Trial 21 finished with value: 0.8858695652173914 and parameters: {'n_estimators': 108, 'max_depth': 8, 'min_samples_split': 12, 'min_samples_leaf': 1, 'max_features': 'sqrt'}. Best is trial 11 with value: 0.8858695652173914. [I 2023-07-31 17:03:32,364] Trial 22 finished with value: 0.8804347826086957 and parameters: {'n_estimators': 348, 'max_depth': 7, 'min_samples_split': 12, 'min_samples_leaf': 1, 'max_features': 'sqrt'}. Best is trial 11 with value: 0.8858695652173914. [I 2023-07-31 17:03:32,550] Trial 23 finished with value: 0.8695652173913043 and parameters: {'n_estimators': 156, 'max_depth': 12, 'min_samples_split': 9, 'min_samples_leaf': 4, 'max_features': 'sqrt'}. Best is trial 11 with value: 0.8858695652173914. [I 2023-07-31 17:03:32,826] Trial 24 finished with value: 0.842391304347826 and parameters: {'n_estimators': 259, 'max_depth': 8, 'min_samples_split': 19, 'min_samples_leaf': 20, 'max_features': 'sqrt'}. Best is trial 11 with value: 0.8858695652173914. [I 2023-07-31 17:03:33,006] Trial 25 finished with value: 0.8532608695652174 and parameters: {'n_estimators': 164, 'max_depth': 4, 'min_samples_split': 11, 'min_samples_leaf': 3, 'max_features': 'sqrt'}. Best is trial 11 with value: 0.8858695652173914. [I 2023-07-31 17:03:33,513] Trial 26 finished with value: 0.875 and parameters: {'n_estimators': 469, 'max_depth': 14, 'min_samples_split': 15, 'min_samples_leaf': 2, 'max_features': 'sqrt'}. Best is trial 11 with value: 0.8858695652173914. [I 2023-07-31 17:03:33,857] Trial 27 finished with value: 0.875 and parameters: {'n_estimators': 307, 'max_depth': 11, 'min_samples_split': 8, 'min_samples_leaf': 5, 'max_features': 'sqrt'}. Best is trial 11 with value: 0.8858695652173914. [I 2023-07-31 17:03:33,987] Trial 28 finished with value: 0.8532608695652174 and parameters: {'n_estimators': 104, 'max_depth': 17, 'min_samples_split': 4, 'min_samples_leaf': 12, 'max_features': 'log2'}. Best is trial 11 with value: 0.8858695652173914. [I 2023-07-31 17:03:34,252] Trial 29 finished with value: 0.8478260869565217 and parameters: {'n_estimators': 242, 'max_depth': 4, 'min_samples_split': 13, 'min_samples_leaf': 7, 'max_features': 'auto'}. Best is trial 11 with value: 0.8858695652173914. [I 2023-07-31 17:03:34,537] Trial 30 finished with value: 0.8369565217391305 and parameters: {'n_estimators': 290, 'max_depth': 1, 'min_samples_split': 16, 'min_samples_leaf': 2, 'max_features': 'auto'}. Best is trial 11 with value: 0.8858695652173914. [I 2023-07-31 17:03:34,695] Trial 31 finished with value: 0.8913043478260869 and parameters: {'n_estimators': 126, 'max_depth': 10, 'min_samples_split': 13, 'min_samples_leaf': 1, 'max_features': 'sqrt'}. Best is trial 31 with value: 0.8913043478260869. [I 2023-07-31 17:03:34,940] Trial 32 finished with value: 0.8804347826086957 and parameters: {'n_estimators': 202, 'max_depth': 8, 'min_samples_split': 12, 'min_samples_leaf': 2, 'max_features': 'sqrt'}. Best is trial 31 with value: 0.8913043478260869. [I 2023-07-31 17:03:35,108] Trial 33 finished with value: 0.8641304347826086 and parameters: {'n_estimators': 146, 'max_depth': 6, 'min_samples_split': 10, 'min_samples_leaf': 4, 'max_features': 'sqrt'}. Best is trial 31 with value: 0.8913043478260869. [I 2023-07-31 17:03:35,501] Trial 34 finished with value: 0.8586956521739131 and parameters: {'n_estimators': 349, 'max_depth': 10, 'min_samples_split': 11, 'min_samples_leaf': 5, 'max_features': 'sqrt'}. Best is trial 31 with value: 0.8913043478260869. [I 2023-07-31 17:03:35,772] Trial 35 finished with value: 0.8695652173913043 and parameters: {'n_estimators': 229, 'max_depth': 15, 'min_samples_split': 13, 'min_samples_leaf': 2, 'max_features': 'sqrt'}. Best is trial 31 with value: 0.8913043478260869. [I 2023-07-31 17:03:35,948] Trial 36 finished with value: 0.8532608695652174 and parameters: {'n_estimators': 159, 'max_depth': 13, 'min_samples_split': 7, 'min_samples_leaf': 17, 'max_features': 'log2'}. Best is trial 31 with value: 0.8913043478260869. [I 2023-07-31 17:03:36,261] Trial 37 finished with value: 0.8858695652173914 and parameters: {'n_estimators': 272, 'max_depth': 8, 'min_samples_split': 14, 'min_samples_leaf': 1, 'max_features': 'sqrt'}. Best is trial 31 with value: 0.8913043478260869. [I 2023-07-31 17:03:36,533] Trial 38 finished with value: 0.842391304347826 and parameters: {'n_estimators': 257, 'max_depth': 3, 'min_samples_split': 14, 'min_samples_leaf': 1, 'max_features': 'auto'}. Best is trial 31 with value: 0.8913043478260869. [I 2023-07-31 17:03:36,670] Trial 39 finished with value: 0.8641304347826086 and parameters: {'n_estimators': 114, 'max_depth': 24, 'min_samples_split': 18, 'min_samples_leaf': 10, 'max_features': 'sqrt'}. Best is trial 31 with value: 0.8913043478260869. [I 2023-07-31 17:03:36,896] Trial 40 finished with value: 0.8532608695652174 and parameters: {'n_estimators': 202, 'max_depth': 5, 'min_samples_split': 16, 'min_samples_leaf': 15, 'max_features': 'log2'}. Best is trial 31 with value: 0.8913043478260869. [I 2023-07-31 17:03:37,301] Trial 41 finished with value: 0.8695652173913043 and parameters: {'n_estimators': 360, 'max_depth': 8, 'min_samples_split': 14, 'min_samples_leaf': 2, 'max_features': 'sqrt'}. Best is trial 31 with value: 0.8913043478260869. [I 2023-07-31 17:03:37,928] Trial 42 finished with value: 0.8695652173913043 and parameters: {'n_estimators': 583, 'max_depth': 11, 'min_samples_split': 12, 'min_samples_leaf': 5, 'max_features': 'sqrt'}. Best is trial 31 with value: 0.8913043478260869. [I 2023-07-31 17:03:38,106] Trial 43 finished with value: 0.8858695652173914 and parameters: {'n_estimators': 138, 'max_depth': 9, 'min_samples_split': 9, 'min_samples_leaf': 1, 'max_features': 'sqrt'}. Best is trial 31 with value: 0.8913043478260869. [I 2023-07-31 17:03:38,285] Trial 44 finished with value: 0.8913043478260869 and parameters: {'n_estimators': 143, 'max_depth': 9, 'min_samples_split': 9, 'min_samples_leaf': 1, 'max_features': 'sqrt'}. Best is trial 31 with value: 0.8913043478260869. [I 2023-07-31 17:03:39,086] Trial 45 finished with value: 0.8804347826086957 and parameters: {'n_estimators': 735, 'max_depth': 7, 'min_samples_split': 8, 'min_samples_leaf': 3, 'max_features': 'sqrt'}. Best is trial 31 with value: 0.8913043478260869. [I 2023-07-31 17:03:39,302] Trial 46 finished with value: 0.8858695652173914 and parameters: {'n_estimators': 181, 'max_depth': 11, 'min_samples_split': 7, 'min_samples_leaf': 1, 'max_features': 'sqrt'}. Best is trial 31 with value: 0.8913043478260869. [I 2023-07-31 17:03:39,450] Trial 47 finished with value: 0.875 and parameters: {'n_estimators': 117, 'max_depth': 16, 'min_samples_split': 6, 'min_samples_leaf': 2, 'max_features': 'sqrt'}. Best is trial 31 with value: 0.8913043478260869. [I 2023-07-31 17:03:39,762] Trial 48 finished with value: 0.8586956521739131 and parameters: {'n_estimators': 279, 'max_depth': 29, 'min_samples_split': 12, 'min_samples_leaf': 6, 'max_features': 'log2'}. Best is trial 31 with value: 0.8913043478260869. [I 2023-07-31 17:03:40,016] Trial 49 finished with value: 0.8695652173913043 and parameters: {'n_estimators': 222, 'max_depth': 9, 'min_samples_split': 20, 'min_samples_leaf': 4, 'max_features': 'sqrt'}. Best is trial 31 with value: 0.8913043478260869. [I 2023-07-31 17:03:40,175] Trial 50 finished with value: 0.8315217391304348 and parameters: {'n_estimators': 150, 'max_depth': 2, 'min_samples_split': 10, 'min_samples_leaf': 3, 'max_features': 'sqrt'}. Best is trial 31 with value: 0.8913043478260869. [I 2023-07-31 17:03:40,337] Trial 51 finished with value: 0.8695652173913043 and parameters: {'n_estimators': 130, 'max_depth': 9, 'min_samples_split': 9, 'min_samples_leaf': 1, 'max_features': 'sqrt'}. Best is trial 31 with value: 0.8913043478260869. [I 2023-07-31 17:03:40,462] Trial 52 finished with value: 0.8586956521739131 and parameters: {'n_estimators': 102, 'max_depth': 5, 'min_samples_split': 11, 'min_samples_leaf': 1, 'max_features': 'sqrt'}. Best is trial 31 with value: 0.8913043478260869. [I 2023-07-31 17:03:40,665] Trial 53 finished with value: 0.8858695652173914 and parameters: {'n_estimators': 173, 'max_depth': 12, 'min_samples_split': 13, 'min_samples_leaf': 2, 'max_features': 'sqrt'}. Best is trial 31 with value: 0.8913043478260869. [I 2023-07-31 17:03:40,917] Trial 54 finished with value: 0.8804347826086957 and parameters: {'n_estimators': 216, 'max_depth': 7, 'min_samples_split': 8, 'min_samples_leaf': 1, 'max_features': 'sqrt'}. Best is trial 31 with value: 0.8913043478260869. [I 2023-07-31 17:03:41,096] Trial 55 finished with value: 0.875 and parameters: {'n_estimators': 147, 'max_depth': 14, 'min_samples_split': 9, 'min_samples_leaf': 3, 'max_features': 'sqrt'}. Best is trial 31 with value: 0.8913043478260869. [I 2023-07-31 17:03:41,544] Trial 56 finished with value: 0.8695652173913043 and parameters: {'n_estimators': 392, 'max_depth': 9, 'min_samples_split': 6, 'min_samples_leaf': 2, 'max_features': 'sqrt'}. Best is trial 31 with value: 0.8913043478260869. [I 2023-07-31 17:03:42,509] Trial 57 finished with value: 0.8804347826086957 and parameters: {'n_estimators': 912, 'max_depth': 11, 'min_samples_split': 10, 'min_samples_leaf': 4, 'max_features': 'sqrt'}. Best is trial 31 with value: 0.8913043478260869. [I 2023-07-31 17:03:42,730] Trial 58 finished with value: 0.875 and parameters: {'n_estimators': 182, 'max_depth': 10, 'min_samples_split': 16, 'min_samples_leaf': 1, 'max_features': 'auto'}. Best is trial 31 with value: 0.8913043478260869. [I 2023-07-31 17:03:42,852] Trial 59 finished with value: 0.8695652173913043 and parameters: {'n_estimators': 100, 'max_depth': 6, 'min_samples_split': 15, 'min_samples_leaf': 3, 'max_features': 'sqrt'}. Best is trial 31 with value: 0.8913043478260869. [I 2023-07-31 17:03:43,163] Trial 60 finished with value: 0.875 and parameters: {'n_estimators': 273, 'max_depth': 19, 'min_samples_split': 8, 'min_samples_leaf': 2, 'max_features': 'sqrt'}. Best is trial 31 with value: 0.8913043478260869. [I 2023-07-31 17:03:43,380] Trial 61 finished with value: 0.8913043478260869 and parameters: {'n_estimators': 174, 'max_depth': 10, 'min_samples_split': 7, 'min_samples_leaf': 1, 'max_features': 'sqrt'}. Best is trial 31 with value: 0.8913043478260869. [I 2023-07-31 17:03:43,549] Trial 62 finished with value: 0.875 and parameters: {'n_estimators': 132, 'max_depth': 8, 'min_samples_split': 5, 'min_samples_leaf': 1, 'max_features': 'sqrt'}. Best is trial 31 with value: 0.8913043478260869. [I 2023-07-31 17:03:43,758] Trial 63 finished with value: 0.875 and parameters: {'n_estimators': 179, 'max_depth': 10, 'min_samples_split': 19, 'min_samples_leaf': 1, 'max_features': 'sqrt'}. Best is trial 31 with value: 0.8913043478260869. [I 2023-07-31 17:03:44,042] Trial 64 finished with value: 0.8804347826086957 and parameters: {'n_estimators': 234, 'max_depth': 12, 'min_samples_split': 9, 'min_samples_leaf': 2, 'max_features': 'sqrt'}. Best is trial 31 with value: 0.8913043478260869. [I 2023-07-31 17:03:44,211] Trial 65 finished with value: 0.875 and parameters: {'n_estimators': 136, 'max_depth': 13, 'min_samples_split': 11, 'min_samples_leaf': 3, 'max_features': 'sqrt'}. Best is trial 31 with value: 0.8913043478260869. [I 2023-07-31 17:03:44,561] Trial 66 finished with value: 0.875 and parameters: {'n_estimators': 319, 'max_depth': 7, 'min_samples_split': 7, 'min_samples_leaf': 4, 'max_features': 'sqrt'}. Best is trial 31 with value: 0.8913043478260869. [I 2023-07-31 17:03:44,789] Trial 67 finished with value: 0.875 and parameters: {'n_estimators': 203, 'max_depth': 5, 'min_samples_split': 10, 'min_samples_leaf': 1, 'max_features': 'log2'}. Best is trial 31 with value: 0.8913043478260869. [I 2023-07-31 17:03:44,983] Trial 68 finished with value: 0.8695652173913043 and parameters: {'n_estimators': 163, 'max_depth': 9, 'min_samples_split': 13, 'min_samples_leaf': 2, 'max_features': 'sqrt'}. Best is trial 31 with value: 0.8913043478260869. [I 2023-07-31 17:03:45,277] Trial 69 finished with value: 0.875 and parameters: {'n_estimators': 250, 'max_depth': 14, 'min_samples_split': 14, 'min_samples_leaf': 5, 'max_features': 'auto'}. Best is trial 31 with value: 0.8913043478260869. [I 2023-07-31 17:03:45,438] Trial 70 finished with value: 0.875 and parameters: {'n_estimators': 128, 'max_depth': 22, 'min_samples_split': 4, 'min_samples_leaf': 3, 'max_features': 'sqrt'}. Best is trial 31 with value: 0.8913043478260869. [I 2023-07-31 17:03:45,669] Trial 71 finished with value: 0.8804347826086957 and parameters: {'n_estimators': 189, 'max_depth': 11, 'min_samples_split': 7, 'min_samples_leaf': 1, 'max_features': 'sqrt'}. Best is trial 31 with value: 0.8913043478260869. [I 2023-07-31 17:03:45,879] Trial 72 finished with value: 0.8858695652173914 and parameters: {'n_estimators': 172, 'max_depth': 10, 'min_samples_split': 6, 'min_samples_leaf': 1, 'max_features': 'sqrt'}. Best is trial 31 with value: 0.8913043478260869. [I 2023-07-31 17:03:46,101] Trial 73 finished with value: 0.8804347826086957 and parameters: {'n_estimators': 142, 'max_depth': 8, 'min_samples_split': 7, 'min_samples_leaf': 2, 'max_features': 'sqrt'}. Best is trial 31 with value: 0.8913043478260869. [I 2023-07-31 17:03:46,356] Trial 74 finished with value: 0.8804347826086957 and parameters: {'n_estimators': 212, 'max_depth': 13, 'min_samples_split': 5, 'min_samples_leaf': 1, 'max_features': 'sqrt'}. Best is trial 31 with value: 0.8913043478260869. [I 2023-07-31 17:03:47,054] Trial 75 finished with value: 0.8804347826086957 and parameters: {'n_estimators': 622, 'max_depth': 11, 'min_samples_split': 8, 'min_samples_leaf': 3, 'max_features': 'sqrt'}. Best is trial 31 with value: 0.8913043478260869. [I 2023-07-31 17:03:47,217] Trial 76 finished with value: 0.8641304347826086 and parameters: {'n_estimators': 122, 'max_depth': 6, 'min_samples_split': 11, 'min_samples_leaf': 2, 'max_features': 'sqrt'}. Best is trial 31 with value: 0.8913043478260869. [I 2023-07-31 17:03:47,743] Trial 77 finished with value: 0.8586956521739131 and parameters: {'n_estimators': 473, 'max_depth': 9, 'min_samples_split': 18, 'min_samples_leaf': 12, 'max_features': 'sqrt'}. Best is trial 31 with value: 0.8913043478260869. [I 2023-07-31 17:03:47,941] Trial 78 finished with value: 0.8804347826086957 and parameters: {'n_estimators': 163, 'max_depth': 8, 'min_samples_split': 9, 'min_samples_leaf': 1, 'max_features': 'sqrt'}. Best is trial 31 with value: 0.8913043478260869. [I 2023-07-31 17:03:48,296] Trial 79 finished with value: 0.8804347826086957 and parameters: {'n_estimators': 294, 'max_depth': 10, 'min_samples_split': 6, 'min_samples_leaf': 2, 'max_features': 'log2'}. Best is trial 31 with value: 0.8913043478260869. [I 2023-07-31 17:03:48,567] Trial 80 finished with value: 0.8586956521739131 and parameters: {'n_estimators': 246, 'max_depth': 7, 'min_samples_split': 12, 'min_samples_leaf': 9, 'max_features': 'sqrt'}. Best is trial 31 with value: 0.8913043478260869. [I 2023-07-31 17:03:48,791] Trial 81 finished with value: 0.8804347826086957 and parameters: {'n_estimators': 181, 'max_depth': 12, 'min_samples_split': 13, 'min_samples_leaf': 2, 'max_features': 'sqrt'}. Best is trial 31 with value: 0.8913043478260869. [I 2023-07-31 17:03:48,996] Trial 82 finished with value: 0.8967391304347826 and parameters: {'n_estimators': 172, 'max_depth': 12, 'min_samples_split': 13, 'min_samples_leaf': 1, 'max_features': 'sqrt'}. Best is trial 82 with value: 0.8967391304347826. [I 2023-07-31 17:03:49,245] Trial 83 finished with value: 0.8967391304347826 and parameters: {'n_estimators': 205, 'max_depth': 11, 'min_samples_split': 12, 'min_samples_leaf': 1, 'max_features': 'sqrt'}. Best is trial 82 with value: 0.8967391304347826. [I 2023-07-31 17:03:49,379] Trial 84 finished with value: 0.875 and parameters: {'n_estimators': 100, 'max_depth': 16, 'min_samples_split': 12, 'min_samples_leaf': 1, 'max_features': 'sqrt'}. Best is trial 82 with value: 0.8967391304347826. [I 2023-07-31 17:03:49,618] Trial 85 finished with value: 0.842391304347826 and parameters: {'n_estimators': 216, 'max_depth': 13, 'min_samples_split': 14, 'min_samples_leaf': 15, 'max_features': 'sqrt'}. Best is trial 82 with value: 0.8967391304347826. [I 2023-07-31 17:03:49,794] Trial 86 finished with value: 0.8641304347826086 and parameters: {'n_estimators': 139, 'max_depth': 9, 'min_samples_split': 13, 'min_samples_leaf': 3, 'max_features': 'auto'}. Best is trial 82 with value: 0.8967391304347826. [I 2023-07-31 17:03:50,015] Trial 87 finished with value: 0.8478260869565217 and parameters: {'n_estimators': 201, 'max_depth': 10, 'min_samples_split': 12, 'min_samples_leaf': 20, 'max_features': 'sqrt'}. Best is trial 82 with value: 0.8967391304347826. [I 2023-07-31 17:03:50,317] Trial 88 finished with value: 0.8695652173913043 and parameters: {'n_estimators': 270, 'max_depth': 12, 'min_samples_split': 15, 'min_samples_leaf': 4, 'max_features': 'sqrt'}. Best is trial 82 with value: 0.8967391304347826. [I 2023-07-31 17:03:50,499] Trial 89 finished with value: 0.875 and parameters: {'n_estimators': 151, 'max_depth': 8, 'min_samples_split': 10, 'min_samples_leaf': 1, 'max_features': 'sqrt'}. Best is trial 82 with value: 0.8967391304347826. [I 2023-07-31 17:03:50,934] Trial 90 finished with value: 0.8478260869565217 and parameters: {'n_estimators': 431, 'max_depth': 15, 'min_samples_split': 11, 'min_samples_leaf': 19, 'max_features': 'sqrt'}. Best is trial 82 with value: 0.8967391304347826. [I 2023-07-31 17:03:51,089] Trial 91 finished with value: 0.8858695652173914 and parameters: {'n_estimators': 116, 'max_depth': 11, 'min_samples_split': 14, 'min_samples_leaf': 1, 'max_features': 'sqrt'}. Best is trial 82 with value: 0.8967391304347826. [I 2023-07-31 17:03:51,308] Trial 92 finished with value: 0.875 and parameters: {'n_estimators': 189, 'max_depth': 11, 'min_samples_split': 13, 'min_samples_leaf': 2, 'max_features': 'sqrt'}. Best is trial 82 with value: 0.8967391304347826. [I 2023-07-31 17:03:51,577] Trial 93 finished with value: 0.875 and parameters: {'n_estimators': 231, 'max_depth': 14, 'min_samples_split': 11, 'min_samples_leaf': 1, 'max_features': 'sqrt'}. Best is trial 82 with value: 0.8967391304347826. [I 2023-07-31 17:03:51,775] Trial 94 finished with value: 0.8695652173913043 and parameters: {'n_estimators': 165, 'max_depth': 9, 'min_samples_split': 8, 'min_samples_leaf': 2, 'max_features': 'sqrt'}. Best is trial 82 with value: 0.8967391304347826. [I 2023-07-31 17:03:52,578] Trial 95 finished with value: 0.8858695652173914 and parameters: {'n_estimators': 761, 'max_depth': 7, 'min_samples_split': 12, 'min_samples_leaf': 1, 'max_features': 'sqrt'}. Best is trial 82 with value: 0.8967391304347826. [I 2023-07-31 17:03:52,741] Trial 96 finished with value: 0.8695652173913043 and parameters: {'n_estimators': 127, 'max_depth': 10, 'min_samples_split': 10, 'min_samples_leaf': 2, 'max_features': 'sqrt'}. Best is trial 82 with value: 0.8967391304347826. [I 2023-07-31 17:03:52,904] Trial 97 finished with value: 0.8478260869565217 and parameters: {'n_estimators': 144, 'max_depth': 12, 'min_samples_split': 9, 'min_samples_leaf': 16, 'max_features': 'log2'}. Best is trial 82 with value: 0.8967391304347826. [I 2023-07-31 17:03:53,120] Trial 98 finished with value: 0.8641304347826086 and parameters: {'n_estimators': 191, 'max_depth': 6, 'min_samples_split': 7, 'min_samples_leaf': 3, 'max_features': 'sqrt'}. Best is trial 82 with value: 0.8967391304347826. [I 2023-07-31 17:03:53,268] Trial 99 finished with value: 0.8858695652173914 and parameters: {'n_estimators': 116, 'max_depth': 8, 'min_samples_split': 2, 'min_samples_leaf': 1, 'max_features': 'sqrt'}. Best is trial 82 with value: 0.8967391304347826.
Best Hyperparameters: {'n_estimators': 172, 'max_depth': 12, 'min_samples_split': 13, 'min_samples_leaf': 1, 'max_features': 'sqrt'} Best Score (Accuracy): 0.8967391304347826
LGBM Classifier Hyperparams
¶X = newDf.drop('HeartDisease', axis=1)
y = newDf['HeartDisease']
def objective(trial):
# Define the hyperparameter search space
params = {
"n_estimators": trial.suggest_int("n_estimators", 100, 1000),
"learning_rate": trial.suggest_loguniform("learning_rate", 0.01, 0.3),
"max_depth": trial.suggest_int("max_depth", 1, 10),
"reg_lambda": trial.suggest_loguniform("reg_lambda", 1e-9, 100),
}
# Split the data into train and validation sets
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42)
# Create and train the LGBMClassifier with the suggested hyperparameters
model = LGBMClassifier(**params)
model.fit(X_train, y_train, eval_set=[(X_val, y_val)], early_stopping_rounds=50, verbose=False)
# Calculate the evaluation metric to optimize (e.g., accuracy)
accuracy = model.score(X_val, y_val)
return accuracy
# Create a study object and optimize the objective function
study = optuna.create_study(direction="maximize") # We want to maximize the accuracy
study.optimize(objective, n_trials=100)
# Get the best hyperparameters and their corresponding score
best_params = study.best_params
best_score = study.best_value
print("Best Hyperparameters:", best_params)
print("Best Score (Accuracy):", best_score)
[I 2023-07-31 17:03:53,283] A new study created in memory with name: no-name-e57bd1c2-648c-4fd6-9d1d-2c73e223be49 [I 2023-07-31 17:03:53,397] Trial 0 finished with value: 0.8532608695652174 and parameters: {'n_estimators': 267, 'learning_rate': 0.013018153556057203, 'max_depth': 5, 'reg_lambda': 1.2227625048456115e-06}. Best is trial 0 with value: 0.8532608695652174. [I 2023-07-31 17:03:53,568] Trial 1 finished with value: 0.8478260869565217 and parameters: {'n_estimators': 827, 'learning_rate': 0.013681151154548918, 'max_depth': 8, 'reg_lambda': 2.71101632345767e-07}. Best is trial 0 with value: 0.8532608695652174. [I 2023-07-31 17:03:53,661] Trial 2 finished with value: 0.8695652173913043 and parameters: {'n_estimators': 376, 'learning_rate': 0.01534352336333233, 'max_depth': 5, 'reg_lambda': 6.1679725988130635e-06}. Best is trial 2 with value: 0.8695652173913043. [I 2023-07-31 17:03:53,768] Trial 3 finished with value: 0.8695652173913043 and parameters: {'n_estimators': 714, 'learning_rate': 0.01082081852215703, 'max_depth': 2, 'reg_lambda': 2.8166926867938007}. Best is trial 2 with value: 0.8695652173913043. [I 2023-07-31 17:03:53,788] Trial 4 finished with value: 0.8804347826086957 and parameters: {'n_estimators': 256, 'learning_rate': 0.29431297856200556, 'max_depth': 2, 'reg_lambda': 0.01756369905707436}. Best is trial 4 with value: 0.8804347826086957. [I 2023-07-31 17:03:53,837] Trial 5 finished with value: 0.8532608695652174 and parameters: {'n_estimators': 766, 'learning_rate': 0.07349556158196278, 'max_depth': 8, 'reg_lambda': 8.773195073832356e-09}. Best is trial 4 with value: 0.8804347826086957. [I 2023-07-31 17:03:53,889] Trial 6 finished with value: 0.8695652173913043 and parameters: {'n_estimators': 345, 'learning_rate': 0.09470782437266827, 'max_depth': 10, 'reg_lambda': 3.7816861336781533e-05}. Best is trial 4 with value: 0.8804347826086957. [I 2023-07-31 17:03:53,918] Trial 7 finished with value: 0.8695652173913043 and parameters: {'n_estimators': 212, 'learning_rate': 0.11712390364765193, 'max_depth': 3, 'reg_lambda': 0.022451523787321695}. Best is trial 4 with value: 0.8804347826086957. [I 2023-07-31 17:03:53,939] Trial 8 finished with value: 0.8641304347826086 and parameters: {'n_estimators': 998, 'learning_rate': 0.2417010135422515, 'max_depth': 3, 'reg_lambda': 0.499071014922435}. Best is trial 4 with value: 0.8804347826086957. [I 2023-07-31 17:03:53,969] Trial 9 finished with value: 0.875 and parameters: {'n_estimators': 845, 'learning_rate': 0.11771991614406213, 'max_depth': 2, 'reg_lambda': 0.19301740271160522}. Best is trial 4 with value: 0.8804347826086957. [I 2023-07-31 17:03:54,012] Trial 10 finished with value: 0.8641304347826086 and parameters: {'n_estimators': 111, 'learning_rate': 0.29997884423916543, 'max_depth': 1, 'reg_lambda': 0.0008510150777079021}. Best is trial 4 with value: 0.8804347826086957. [I 2023-07-31 17:03:54,058] Trial 11 finished with value: 0.8695652173913043 and parameters: {'n_estimators': 517, 'learning_rate': 0.2185399023423723, 'max_depth': 1, 'reg_lambda': 11.30311184771701}. Best is trial 4 with value: 0.8804347826086957. [I 2023-07-31 17:03:54,104] Trial 12 finished with value: 0.8695652173913043 and parameters: {'n_estimators': 554, 'learning_rate': 0.15495548961868058, 'max_depth': 4, 'reg_lambda': 0.010375843074132848}. Best is trial 4 with value: 0.8804347826086957. [I 2023-07-31 17:03:54,163] Trial 13 finished with value: 0.8695652173913043 and parameters: {'n_estimators': 551, 'learning_rate': 0.1649388555304257, 'max_depth': 7, 'reg_lambda': 0.12708035735027287}. Best is trial 4 with value: 0.8804347826086957. [I 2023-07-31 17:03:54,300] Trial 14 finished with value: 0.8804347826086957 and parameters: {'n_estimators': 977, 'learning_rate': 0.04951384313688183, 'max_depth': 3, 'reg_lambda': 45.419771035345455}. Best is trial 4 with value: 0.8804347826086957. [I 2023-07-31 17:03:54,417] Trial 15 finished with value: 0.875 and parameters: {'n_estimators': 942, 'learning_rate': 0.03902661537988936, 'max_depth': 3, 'reg_lambda': 16.808597307160888}. Best is trial 4 with value: 0.8804347826086957. [I 2023-07-31 17:03:54,583] Trial 16 finished with value: 0.875 and parameters: {'n_estimators': 454, 'learning_rate': 0.046985560427766075, 'max_depth': 6, 'reg_lambda': 38.25507124409767}. Best is trial 4 with value: 0.8804347826086957. [I 2023-07-31 17:03:54,643] Trial 17 finished with value: 0.8695652173913043 and parameters: {'n_estimators': 639, 'learning_rate': 0.06301976388432276, 'max_depth': 4, 'reg_lambda': 0.0015664923091507127}. Best is trial 4 with value: 0.8804347826086957. [I 2023-07-31 17:03:54,691] Trial 18 finished with value: 0.8641304347826086 and parameters: {'n_estimators': 117, 'learning_rate': 0.03200675512022005, 'max_depth': 2, 'reg_lambda': 63.4319298988081}. Best is trial 4 with value: 0.8804347826086957. [I 2023-07-31 17:03:54,784] Trial 19 finished with value: 0.8804347826086957 and parameters: {'n_estimators': 402, 'learning_rate': 0.028608478663222206, 'max_depth': 4, 'reg_lambda': 1.406445888909495}. Best is trial 4 with value: 0.8804347826086957. [I 2023-07-31 17:03:54,841] Trial 20 finished with value: 0.8641304347826086 and parameters: {'n_estimators': 662, 'learning_rate': 0.07507596283611886, 'max_depth': 1, 'reg_lambda': 0.03259968075403107}. Best is trial 4 with value: 0.8804347826086957. [I 2023-07-31 17:03:54,922] Trial 21 finished with value: 0.8695652173913043 and parameters: {'n_estimators': 381, 'learning_rate': 0.02946623422200741, 'max_depth': 4, 'reg_lambda': 0.7409071709520275}. Best is trial 4 with value: 0.8804347826086957. [I 2023-07-31 17:03:54,991] Trial 22 finished with value: 0.8695652173913043 and parameters: {'n_estimators': 249, 'learning_rate': 0.049567964277917015, 'max_depth': 3, 'reg_lambda': 1.5522513313185486}. Best is trial 4 with value: 0.8804347826086957. [I 2023-07-31 17:03:55,143] Trial 23 finished with value: 0.875 and parameters: {'n_estimators': 466, 'learning_rate': 0.023851109367003704, 'max_depth': 6, 'reg_lambda': 94.36857901353164}. Best is trial 4 with value: 0.8804347826086957. [I 2023-07-31 17:03:55,258] Trial 24 finished with value: 0.8858695652173914 and parameters: {'n_estimators': 305, 'learning_rate': 0.02118547949447521, 'max_depth': 4, 'reg_lambda': 5.997345032230852}. Best is trial 24 with value: 0.8858695652173914. [I 2023-07-31 17:03:55,330] Trial 25 finished with value: 0.875 and parameters: {'n_estimators': 302, 'learning_rate': 0.022363531436930862, 'max_depth': 2, 'reg_lambda': 6.320702914593107}. Best is trial 24 with value: 0.8858695652173914. [I 2023-07-31 17:03:55,416] Trial 26 finished with value: 0.8967391304347826 and parameters: {'n_estimators': 185, 'learning_rate': 0.05630880792841062, 'max_depth': 5, 'reg_lambda': 4.687239071813298}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:03:55,526] Trial 27 finished with value: 0.8586956521739131 and parameters: {'n_estimators': 194, 'learning_rate': 0.01771876655807937, 'max_depth': 5, 'reg_lambda': 0.13834464019407935}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:03:55,620] Trial 28 finished with value: 0.8695652173913043 and parameters: {'n_estimators': 163, 'learning_rate': 0.03802543362610596, 'max_depth': 7, 'reg_lambda': 5.228744400706692}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:03:55,755] Trial 29 finished with value: 0.8532608695652174 and parameters: {'n_estimators': 289, 'learning_rate': 0.020451465912424128, 'max_depth': 5, 'reg_lambda': 0.0046023210144541665}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:03:55,820] Trial 30 finished with value: 0.8641304347826086 and parameters: {'n_estimators': 309, 'learning_rate': 0.06463130155536476, 'max_depth': 5, 'reg_lambda': 0.043402568849406555}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:03:55,897] Trial 31 finished with value: 0.8858695652173914 and parameters: {'n_estimators': 234, 'learning_rate': 0.04721914230188892, 'max_depth': 3, 'reg_lambda': 13.426694526923475}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:03:55,985] Trial 32 finished with value: 0.8804347826086957 and parameters: {'n_estimators': 216, 'learning_rate': 0.012446266707254038, 'max_depth': 4, 'reg_lambda': 6.459686711295942}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:03:56,054] Trial 33 finished with value: 0.8641304347826086 and parameters: {'n_estimators': 154, 'learning_rate': 0.08642024623867389, 'max_depth': 6, 'reg_lambda': 0.3819401477030292}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:03:56,130] Trial 34 finished with value: 0.8804347826086957 and parameters: {'n_estimators': 287, 'learning_rate': 0.018783509229924344, 'max_depth': 2, 'reg_lambda': 1.7433624815840818}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:03:56,239] Trial 35 finished with value: 0.8858695652173914 and parameters: {'n_estimators': 250, 'learning_rate': 0.056134245186147756, 'max_depth': 4, 'reg_lambda': 12.259779838968784}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:03:56,373] Trial 36 finished with value: 0.8804347826086957 and parameters: {'n_estimators': 337, 'learning_rate': 0.059729178458144815, 'max_depth': 5, 'reg_lambda': 17.91486500714344}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:03:56,460] Trial 37 finished with value: 0.875 and parameters: {'n_estimators': 234, 'learning_rate': 0.03642537268444074, 'max_depth': 4, 'reg_lambda': 2.758504167811863}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:03:56,536] Trial 38 finished with value: 0.875 and parameters: {'n_estimators': 159, 'learning_rate': 0.014299229911155231, 'max_depth': 10, 'reg_lambda': 18.710061435272255}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:03:56,684] Trial 39 finished with value: 0.8858695652173914 and parameters: {'n_estimators': 422, 'learning_rate': 0.04461633919793977, 'max_depth': 6, 'reg_lambda': 88.99875941146679}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:03:56,739] Trial 40 finished with value: 0.8695652173913043 and parameters: {'n_estimators': 366, 'learning_rate': 0.05460573539614581, 'max_depth': 3, 'reg_lambda': 0.4804810918535277}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:03:56,904] Trial 41 finished with value: 0.8858695652173914 and parameters: {'n_estimators': 435, 'learning_rate': 0.0444431429412412, 'max_depth': 7, 'reg_lambda': 98.97219622015362}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:03:57,014] Trial 42 finished with value: 0.875 and parameters: {'n_estimators': 252, 'learning_rate': 0.04167972134223788, 'max_depth': 6, 'reg_lambda': 4.257721957415404}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:03:57,151] Trial 43 finished with value: 0.8804347826086957 and parameters: {'n_estimators': 337, 'learning_rate': 0.054693150269471025, 'max_depth': 8, 'reg_lambda': 26.870594314245317}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:03:57,248] Trial 44 finished with value: 0.8804347826086957 and parameters: {'n_estimators': 187, 'learning_rate': 0.0693737503282495, 'max_depth': 5, 'reg_lambda': 12.472139004779155}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:03:57,390] Trial 45 finished with value: 0.8858695652173914 and parameters: {'n_estimators': 406, 'learning_rate': 0.02663579554404477, 'max_depth': 4, 'reg_lambda': 99.98721021225505}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:03:57,492] Trial 46 finished with value: 0.8858695652173914 and parameters: {'n_estimators': 499, 'learning_rate': 0.03236049395766931, 'max_depth': 6, 'reg_lambda': 2.1983032423141164}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:03:57,562] Trial 47 finished with value: 0.8858695652173914 and parameters: {'n_estimators': 107, 'learning_rate': 0.03547195448597178, 'max_depth': 7, 'reg_lambda': 8.25617132567962}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:03:57,664] Trial 48 finished with value: 0.8532608695652174 and parameters: {'n_estimators': 259, 'learning_rate': 0.04335564164137364, 'max_depth': 9, 'reg_lambda': 0.00010538320135956488}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:03:57,756] Trial 49 finished with value: 0.8804347826086957 and parameters: {'n_estimators': 338, 'learning_rate': 0.07776898870950737, 'max_depth': 3, 'reg_lambda': 25.42514500307172}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:03:57,859] Trial 50 finished with value: 0.8586956521739131 and parameters: {'n_estimators': 217, 'learning_rate': 0.010019179535152453, 'max_depth': 5, 'reg_lambda': 0.7122107028866116}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:03:58,026] Trial 51 finished with value: 0.8804347826086957 and parameters: {'n_estimators': 421, 'learning_rate': 0.04316716310959048, 'max_depth': 8, 'reg_lambda': 47.083009902694954}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:03:58,194] Trial 52 finished with value: 0.8858695652173914 and parameters: {'n_estimators': 448, 'learning_rate': 0.04899598006906323, 'max_depth': 7, 'reg_lambda': 92.99526115720964}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:03:58,316] Trial 53 finished with value: 0.8858695652173914 and parameters: {'n_estimators': 600, 'learning_rate': 0.054514004851653204, 'max_depth': 7, 'reg_lambda': 9.908756660257872}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:03:58,450] Trial 54 finished with value: 0.8858695652173914 and parameters: {'n_estimators': 510, 'learning_rate': 0.06026527571238746, 'max_depth': 6, 'reg_lambda': 29.974571054972397}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:03:58,543] Trial 55 finished with value: 0.8695652173913043 and parameters: {'n_estimators': 366, 'learning_rate': 0.042941489534262633, 'max_depth': 3, 'reg_lambda': 3.7440104116739428}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:03:58,701] Trial 56 finished with value: 0.8858695652173914 and parameters: {'n_estimators': 431, 'learning_rate': 0.034099477363758304, 'max_depth': 4, 'reg_lambda': 43.06242653891314}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:03:58,808] Trial 57 finished with value: 0.8858695652173914 and parameters: {'n_estimators': 311, 'learning_rate': 0.038343085997941694, 'max_depth': 9, 'reg_lambda': 1.1903053008574}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:03:58,913] Trial 58 finished with value: 0.8858695652173914 and parameters: {'n_estimators': 141, 'learning_rate': 0.04943585729909226, 'max_depth': 5, 'reg_lambda': 11.406395588682951}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:03:59,013] Trial 59 finished with value: 0.8695652173913043 and parameters: {'n_estimators': 194, 'learning_rate': 0.026211200236319416, 'max_depth': 4, 'reg_lambda': 0.31889532057802544}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:03:59,106] Trial 60 finished with value: 0.8695652173913043 and parameters: {'n_estimators': 472, 'learning_rate': 0.031114117201581148, 'max_depth': 3, 'reg_lambda': 3.6287980585380497}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:03:59,254] Trial 61 finished with value: 0.8858695652173914 and parameters: {'n_estimators': 393, 'learning_rate': 0.02657058266970445, 'max_depth': 4, 'reg_lambda': 91.43285855980217}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:03:59,412] Trial 62 finished with value: 0.8858695652173914 and parameters: {'n_estimators': 402, 'learning_rate': 0.046360903250090534, 'max_depth': 5, 'reg_lambda': 84.98809590210043}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:03:59,563] Trial 63 finished with value: 0.8858695652173914 and parameters: {'n_estimators': 575, 'learning_rate': 0.028714482134820123, 'max_depth': 4, 'reg_lambda': 21.57506782109373}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:03:59,679] Trial 64 finished with value: 0.8804347826086957 and parameters: {'n_estimators': 275, 'learning_rate': 0.06708830677710821, 'max_depth': 6, 'reg_lambda': 43.64218083530626}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:03:59,762] Trial 65 finished with value: 0.8586956521739131 and parameters: {'n_estimators': 484, 'learning_rate': 0.058689488728076986, 'max_depth': 2, 'reg_lambda': 8.445482054588288}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:03:59,868] Trial 66 finished with value: 0.875 and parameters: {'n_estimators': 316, 'learning_rate': 0.03921367449231354, 'max_depth': 4, 'reg_lambda': 1.2120953826891423}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:03:59,989] Trial 67 finished with value: 0.875 and parameters: {'n_estimators': 358, 'learning_rate': 0.03445481224698674, 'max_depth': 3, 'reg_lambda': 43.273154397531435}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:04:00,203] Trial 68 finished with value: 0.8804347826086957 and parameters: {'n_estimators': 531, 'learning_rate': 0.023833538694218108, 'max_depth': 4, 'reg_lambda': 14.465127544751061}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:04:00,347] Trial 69 finished with value: 0.8913043478260869 and parameters: {'n_estimators': 224, 'learning_rate': 0.016997240804218383, 'max_depth': 5, 'reg_lambda': 4.258883198427055}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:04:00,497] Trial 70 finished with value: 0.8532608695652174 and parameters: {'n_estimators': 242, 'learning_rate': 0.015110963349900353, 'max_depth': 5, 'reg_lambda': 0.16648154321977215}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:04:00,623] Trial 71 finished with value: 0.8804347826086957 and parameters: {'n_estimators': 181, 'learning_rate': 0.018046077793194237, 'max_depth': 5, 'reg_lambda': 5.756968436588689}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:04:00,805] Trial 72 finished with value: 0.875 and parameters: {'n_estimators': 757, 'learning_rate': 0.016616447015527853, 'max_depth': 6, 'reg_lambda': 2.7673565803676645}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:04:00,900] Trial 73 finished with value: 0.8858695652173914 and parameters: {'n_estimators': 225, 'learning_rate': 0.020574655634567923, 'max_depth': 7, 'reg_lambda': 96.67905186048618}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:04:01,001] Trial 74 finished with value: 0.8858695652173914 and parameters: {'n_estimators': 261, 'learning_rate': 0.053506012422817065, 'max_depth': 4, 'reg_lambda': 29.034232737209344}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:04:01,073] Trial 75 finished with value: 0.8641304347826086 and parameters: {'n_estimators': 133, 'learning_rate': 0.012292024468774638, 'max_depth': 5, 'reg_lambda': 19.253400348349373}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:04:01,270] Trial 76 finished with value: 0.875 and parameters: {'n_estimators': 425, 'learning_rate': 0.016157292035308708, 'max_depth': 6, 'reg_lambda': 5.805969096497799}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:04:01,390] Trial 77 finished with value: 0.8804347826086957 and parameters: {'n_estimators': 283, 'learning_rate': 0.020948396535966682, 'max_depth': 4, 'reg_lambda': 1.9595251931959021}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:04:01,490] Trial 78 finished with value: 0.8695652173913043 and parameters: {'n_estimators': 204, 'learning_rate': 0.045230389534434076, 'max_depth': 7, 'reg_lambda': 54.83497410043113}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:04:01,567] Trial 79 finished with value: 0.875 and parameters: {'n_estimators': 173, 'learning_rate': 0.038823340754060756, 'max_depth': 3, 'reg_lambda': 13.171959999647283}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:04:01,645] Trial 80 finished with value: 0.8641304347826086 and parameters: {'n_estimators': 894, 'learning_rate': 0.050123450720525695, 'max_depth': 5, 'reg_lambda': 0.07791409833708904}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:04:01,756] Trial 81 finished with value: 0.8858695652173914 and parameters: {'n_estimators': 488, 'learning_rate': 0.03325945168049673, 'max_depth': 6, 'reg_lambda': 2.3700386639332187}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:04:01,864] Trial 82 finished with value: 0.8641304347826086 and parameters: {'n_estimators': 450, 'learning_rate': 0.03130492800125262, 'max_depth': 6, 'reg_lambda': 0.8784954441627809}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:04:02,053] Trial 83 finished with value: 0.8967391304347826 and parameters: {'n_estimators': 383, 'learning_rate': 0.041006133372181446, 'max_depth': 8, 'reg_lambda': 8.047033187336476}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:04:02,316] Trial 84 finished with value: 0.8913043478260869 and parameters: {'n_estimators': 313, 'learning_rate': 0.04099131939481015, 'max_depth': 8, 'reg_lambda': 7.562002199660309}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:04:02,419] Trial 85 finished with value: 0.875 and parameters: {'n_estimators': 326, 'learning_rate': 0.06244651342894715, 'max_depth': 8, 'reg_lambda': 4.627680292669212}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:04:02,559] Trial 86 finished with value: 0.8913043478260869 and parameters: {'n_estimators': 289, 'learning_rate': 0.0402494944795181, 'max_depth': 8, 'reg_lambda': 8.121831880205434}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:04:02,656] Trial 87 finished with value: 0.842391304347826 and parameters: {'n_estimators': 295, 'learning_rate': 0.03622532231099927, 'max_depth': 8, 'reg_lambda': 0.6275773218164925}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:04:02,771] Trial 88 finished with value: 0.8804347826086957 and parameters: {'n_estimators': 234, 'learning_rate': 0.040942646082876226, 'max_depth': 9, 'reg_lambda': 7.737290309343424}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:04:02,859] Trial 89 finished with value: 0.8695652173913043 and parameters: {'n_estimators': 273, 'learning_rate': 0.052296266782023274, 'max_depth': 8, 'reg_lambda': 1.6563015053998353}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:04:02,961] Trial 90 finished with value: 0.8641304347826086 and parameters: {'n_estimators': 350, 'learning_rate': 0.04625475559716627, 'max_depth': 9, 'reg_lambda': 0.282071451077157}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:04:03,159] Trial 91 finished with value: 0.8858695652173914 and parameters: {'n_estimators': 385, 'learning_rate': 0.04081943485275355, 'max_depth': 8, 'reg_lambda': 27.345357193111564}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:04:03,318] Trial 92 finished with value: 0.875 and parameters: {'n_estimators': 298, 'learning_rate': 0.058576421448379185, 'max_depth': 7, 'reg_lambda': 12.9228974569045}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:04:03,423] Trial 93 finished with value: 0.875 and parameters: {'n_estimators': 373, 'learning_rate': 0.04441357882498328, 'max_depth': 8, 'reg_lambda': 3.4744496827215685}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:04:03,554] Trial 94 finished with value: 0.875 and parameters: {'n_estimators': 212, 'learning_rate': 0.04730650091231224, 'max_depth': 7, 'reg_lambda': 7.163018590273796}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:04:03,677] Trial 95 finished with value: 0.8913043478260869 and parameters: {'n_estimators': 324, 'learning_rate': 0.05129354561820014, 'max_depth': 8, 'reg_lambda': 49.07134233184788}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:04:03,798] Trial 96 finished with value: 0.875 and parameters: {'n_estimators': 324, 'learning_rate': 0.05679328238583312, 'max_depth': 9, 'reg_lambda': 18.67726258828204}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:04:03,901] Trial 97 finished with value: 0.8804347826086957 and parameters: {'n_estimators': 257, 'learning_rate': 0.05162505197093655, 'max_depth': 8, 'reg_lambda': 57.07669424016409}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:04:03,979] Trial 98 finished with value: 0.8532608695652174 and parameters: {'n_estimators': 240, 'learning_rate': 0.07035142336465472, 'max_depth': 10, 'reg_lambda': 0.8961087309625484}. Best is trial 26 with value: 0.8967391304347826. [I 2023-07-31 17:04:04,118] Trial 99 finished with value: 0.8858695652173914 and parameters: {'n_estimators': 341, 'learning_rate': 0.036691213385776994, 'max_depth': 9, 'reg_lambda': 33.97978479144624}. Best is trial 26 with value: 0.8967391304347826.
Best Hyperparameters: {'n_estimators': 185, 'learning_rate': 0.05630880792841062, 'max_depth': 5, 'reg_lambda': 4.687239071813298} Best Score (Accuracy): 0.8967391304347826
from sklearn.ensemble import RandomForestClassifier
from catboost import CatBoostClassifier
from lightgbm import LGBMClassifier
from sklearn.model_selection import train_test_split
# Split the data into train and validation sets
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42)
# Define the individual classifiers
#{'n_estimators': 373, 'max_depth': 10, 'min_samples_split': 10, 'min_samples_leaf': 1, 'max_features': 'log2'}
rf_classifier = RandomForestClassifier(random_state=42, n_estimators=373, max_depth=10, min_samples_split=10, min_samples_leaf=1, max_features='log2')
#{'iterations': 542, 'learning_rate': 0.21231296216531056, 'depth': 6, 'l2_leaf_reg': 13.675507885439055}
catboost_classifier = CatBoostClassifier(random_state=42, iterations=542, learning_rate=0.21231296216531056, depth=6, l2_leaf_reg=13.675507885439055)
#{'n_estimators': 637, 'learning_rate': 0.11625626039818515, 'max_depth': 7, 'reg_lambda': 4.777261357298674}
lgbm_classifier = LGBMClassifier(random_state=42, n_estimators=637, learning_rate=0.11625626039818515, max_depth=7, reg_lambda=4.777261357298674)
# Define the bagging classifier, combining the three individual classifiers
bagging_clf = BaggingClassifier(
base_estimator=VotingClassifier(
estimators=[
('rf', rf_classifier),
('catboost', catboost_classifier),
('lgbm', lgbm_classifier)
],
voting='hard' # Voting type 'hard' for majority voting
),
n_estimators=10, # Number of base estimators
random_state=42
)
# Train the bagging classifier
bagging_clf.fit(X_train, y_train)
# Evaluate the bagging classifier on the validation set
accuracy = bagging_clf.score(X_val, y_val)
print("Bagging Classifier Accuracy:", accuracy)
0: learn: 0.5498791 total: 2.09ms remaining: 1.13s 1: learn: 0.4450642 total: 3.81ms remaining: 1.03s 2: learn: 0.3819276 total: 5.64ms remaining: 1.01s 3: learn: 0.3396926 total: 7.55ms remaining: 1.01s 4: learn: 0.3103555 total: 9.6ms remaining: 1.03s 5: learn: 0.2923378 total: 11.4ms remaining: 1.02s 6: learn: 0.2711111 total: 13.3ms remaining: 1.02s 7: learn: 0.2524003 total: 14.9ms remaining: 995ms 8: learn: 0.2401941 total: 16.7ms remaining: 986ms 9: learn: 0.2260957 total: 18.5ms remaining: 982ms 10: learn: 0.2149582 total: 20.3ms remaining: 978ms 11: learn: 0.2088944 total: 21.8ms remaining: 961ms 12: learn: 0.2017182 total: 23.4ms remaining: 951ms 13: learn: 0.1931806 total: 25.5ms remaining: 962ms 14: learn: 0.1863846 total: 27.9ms remaining: 981ms 15: learn: 0.1820839 total: 30.1ms remaining: 991ms 16: learn: 0.1749746 total: 57.3ms remaining: 1.77s 17: learn: 0.1678627 total: 59.7ms remaining: 1.74s 18: learn: 0.1643671 total: 61.5ms remaining: 1.69s 19: learn: 0.1624191 total: 63.2ms remaining: 1.65s 20: learn: 0.1603981 total: 65.4ms remaining: 1.62s 21: learn: 0.1552558 total: 67.6ms remaining: 1.6s 22: learn: 0.1510474 total: 70.2ms remaining: 1.58s 23: learn: 0.1481917 total: 72.2ms remaining: 1.56s 24: learn: 0.1445299 total: 74ms remaining: 1.53s 25: learn: 0.1429082 total: 75.7ms remaining: 1.5s 26: learn: 0.1378898 total: 77.6ms remaining: 1.48s 27: learn: 0.1341018 total: 79.2ms remaining: 1.45s 28: learn: 0.1326609 total: 80.9ms remaining: 1.43s 29: learn: 0.1303405 total: 82.4ms remaining: 1.41s 30: learn: 0.1261269 total: 84.1ms remaining: 1.39s 31: learn: 0.1225254 total: 85.9ms remaining: 1.37s 32: learn: 0.1198314 total: 87.9ms remaining: 1.35s 33: learn: 0.1173934 total: 89.7ms remaining: 1.34s 34: learn: 0.1144599 total: 91.4ms remaining: 1.32s 35: learn: 0.1119401 total: 93.1ms remaining: 1.31s 36: learn: 0.1086234 total: 94.8ms remaining: 1.29s 37: learn: 0.1060941 total: 96.6ms remaining: 1.28s 38: learn: 0.1043862 total: 98.3ms remaining: 1.27s 39: learn: 0.1010934 total: 100ms remaining: 1.26s 40: learn: 0.0987693 total: 102ms remaining: 1.24s 41: learn: 0.0962964 total: 103ms remaining: 1.23s 42: learn: 0.0934958 total: 105ms remaining: 1.22s 43: learn: 0.0900870 total: 106ms remaining: 1.2s 44: learn: 0.0866827 total: 108ms remaining: 1.2s 45: learn: 0.0849804 total: 110ms remaining: 1.19s 46: learn: 0.0833356 total: 112ms remaining: 1.18s 47: learn: 0.0823007 total: 114ms remaining: 1.17s 48: learn: 0.0813094 total: 115ms remaining: 1.16s 49: learn: 0.0807264 total: 117ms remaining: 1.15s 50: learn: 0.0787701 total: 119ms remaining: 1.14s 51: learn: 0.0774283 total: 120ms remaining: 1.13s 52: learn: 0.0761870 total: 122ms remaining: 1.12s 53: learn: 0.0742248 total: 123ms remaining: 1.11s 54: learn: 0.0719370 total: 125ms remaining: 1.11s 55: learn: 0.0698432 total: 127ms remaining: 1.1s 56: learn: 0.0685025 total: 129ms remaining: 1.1s 57: learn: 0.0666136 total: 131ms remaining: 1.09s 58: learn: 0.0655044 total: 133ms remaining: 1.09s 59: learn: 0.0645107 total: 135ms remaining: 1.09s 60: learn: 0.0627137 total: 137ms remaining: 1.08s 61: learn: 0.0613639 total: 140ms remaining: 1.08s 62: learn: 0.0605148 total: 141ms remaining: 1.07s 63: learn: 0.0592217 total: 143ms remaining: 1.07s 64: learn: 0.0578289 total: 145ms remaining: 1.07s 65: learn: 0.0570790 total: 147ms remaining: 1.06s 66: learn: 0.0559313 total: 149ms remaining: 1.06s 67: learn: 0.0546932 total: 151ms remaining: 1.05s 68: learn: 0.0532912 total: 153ms remaining: 1.05s 69: learn: 0.0527073 total: 155ms remaining: 1.04s 70: learn: 0.0515468 total: 157ms remaining: 1.04s 71: learn: 0.0506335 total: 159ms remaining: 1.04s 72: learn: 0.0494199 total: 160ms remaining: 1.03s 73: learn: 0.0487928 total: 162ms remaining: 1.03s 74: learn: 0.0476036 total: 164ms remaining: 1.02s 75: learn: 0.0471364 total: 167ms remaining: 1.02s 76: learn: 0.0464449 total: 168ms remaining: 1.02s 77: learn: 0.0458273 total: 171ms remaining: 1.01s 78: learn: 0.0450817 total: 173ms remaining: 1.01s 79: learn: 0.0446137 total: 175ms remaining: 1.01s 80: learn: 0.0443245 total: 176ms remaining: 1s 81: learn: 0.0440666 total: 178ms remaining: 1s 82: learn: 0.0434965 total: 180ms remaining: 996ms 83: learn: 0.0428808 total: 182ms remaining: 992ms 84: learn: 0.0422616 total: 183ms remaining: 986ms 85: learn: 0.0414400 total: 185ms remaining: 981ms 86: learn: 0.0411645 total: 187ms remaining: 978ms 87: learn: 0.0402862 total: 189ms remaining: 973ms 88: learn: 0.0394754 total: 190ms remaining: 969ms 89: learn: 0.0393364 total: 192ms remaining: 965ms 90: learn: 0.0386260 total: 194ms remaining: 963ms 91: learn: 0.0380961 total: 196ms remaining: 959ms 92: learn: 0.0378923 total: 198ms remaining: 957ms 93: learn: 0.0373957 total: 200ms remaining: 954ms 94: learn: 0.0366906 total: 202ms remaining: 951ms 95: learn: 0.0365816 total: 204ms remaining: 947ms 96: learn: 0.0362962 total: 205ms remaining: 943ms 97: learn: 0.0355803 total: 207ms remaining: 939ms 98: learn: 0.0351842 total: 209ms remaining: 934ms 99: learn: 0.0345176 total: 210ms remaining: 930ms 100: learn: 0.0341008 total: 212ms remaining: 926ms 101: learn: 0.0335164 total: 214ms remaining: 922ms 102: learn: 0.0328290 total: 216ms remaining: 919ms 103: learn: 0.0325438 total: 218ms remaining: 919ms 104: learn: 0.0319293 total: 229ms remaining: 953ms 105: learn: 0.0313911 total: 231ms remaining: 952ms 106: learn: 0.0311152 total: 233ms remaining: 949ms 107: learn: 0.0308501 total: 235ms remaining: 945ms 108: learn: 0.0303566 total: 237ms remaining: 941ms 109: learn: 0.0301229 total: 239ms remaining: 938ms 110: learn: 0.0297626 total: 241ms remaining: 935ms 111: learn: 0.0295985 total: 242ms remaining: 931ms 112: learn: 0.0290547 total: 245ms remaining: 928ms 113: learn: 0.0287131 total: 246ms remaining: 925ms 114: learn: 0.0286015 total: 248ms remaining: 922ms 115: learn: 0.0284608 total: 250ms remaining: 919ms 116: learn: 0.0284005 total: 252ms remaining: 916ms 117: learn: 0.0281758 total: 254ms remaining: 914ms 118: learn: 0.0278883 total: 257ms remaining: 913ms 119: learn: 0.0276940 total: 259ms remaining: 910ms 120: learn: 0.0273049 total: 261ms remaining: 908ms 121: learn: 0.0270972 total: 263ms remaining: 906ms 122: learn: 0.0267486 total: 265ms remaining: 904ms 123: learn: 0.0265922 total: 268ms remaining: 903ms 124: learn: 0.0263965 total: 270ms remaining: 900ms 125: learn: 0.0260145 total: 272ms remaining: 899ms 126: learn: 0.0258605 total: 274ms remaining: 896ms 127: learn: 0.0256067 total: 276ms remaining: 893ms 128: learn: 0.0252934 total: 278ms remaining: 891ms 129: learn: 0.0251527 total: 281ms remaining: 889ms 130: learn: 0.0248246 total: 283ms remaining: 888ms 131: learn: 0.0244836 total: 285ms remaining: 887ms 132: learn: 0.0241206 total: 288ms remaining: 884ms 133: learn: 0.0239426 total: 289ms remaining: 881ms 134: learn: 0.0236870 total: 292ms remaining: 879ms 135: learn: 0.0236264 total: 294ms remaining: 876ms 136: learn: 0.0234407 total: 296ms remaining: 874ms 137: learn: 0.0232511 total: 298ms remaining: 871ms 138: learn: 0.0230417 total: 300ms remaining: 869ms 139: learn: 0.0229300 total: 301ms remaining: 865ms 140: learn: 0.0227859 total: 303ms remaining: 861ms 141: learn: 0.0226741 total: 304ms remaining: 858ms 142: learn: 0.0224731 total: 306ms remaining: 854ms 143: learn: 0.0224524 total: 308ms remaining: 850ms 144: learn: 0.0222658 total: 310ms remaining: 847ms 145: learn: 0.0221346 total: 315ms remaining: 854ms 146: learn: 0.0218077 total: 316ms remaining: 850ms 147: learn: 0.0215820 total: 318ms remaining: 847ms 148: learn: 0.0214291 total: 320ms remaining: 843ms 149: learn: 0.0213463 total: 321ms remaining: 840ms 150: learn: 0.0212338 total: 323ms remaining: 836ms 151: learn: 0.0209308 total: 324ms remaining: 832ms 152: learn: 0.0206840 total: 326ms remaining: 829ms 153: learn: 0.0204179 total: 328ms remaining: 825ms 154: learn: 0.0202491 total: 329ms remaining: 822ms 155: learn: 0.0201426 total: 331ms remaining: 819ms 156: learn: 0.0200235 total: 333ms remaining: 815ms 157: learn: 0.0199386 total: 334ms remaining: 812ms 158: learn: 0.0197754 total: 336ms remaining: 809ms 159: learn: 0.0196935 total: 337ms remaining: 805ms 160: learn: 0.0196112 total: 339ms remaining: 803ms 161: learn: 0.0195366 total: 341ms remaining: 800ms 162: learn: 0.0193427 total: 343ms remaining: 798ms 163: learn: 0.0191473 total: 346ms remaining: 796ms 164: learn: 0.0190205 total: 347ms remaining: 794ms 165: learn: 0.0188175 total: 350ms remaining: 792ms 166: learn: 0.0186737 total: 352ms remaining: 790ms 167: learn: 0.0185066 total: 354ms remaining: 788ms 168: learn: 0.0183603 total: 356ms remaining: 786ms 169: learn: 0.0182284 total: 359ms remaining: 784ms 170: learn: 0.0179818 total: 361ms remaining: 782ms 171: learn: 0.0177968 total: 363ms remaining: 781ms 172: learn: 0.0177946 total: 365ms remaining: 779ms 173: learn: 0.0176645 total: 367ms remaining: 777ms 174: learn: 0.0174957 total: 369ms remaining: 775ms 175: learn: 0.0174238 total: 372ms remaining: 773ms 176: learn: 0.0173823 total: 375ms remaining: 773ms 177: learn: 0.0172389 total: 377ms remaining: 772ms 178: learn: 0.0170961 total: 380ms remaining: 770ms 179: learn: 0.0169965 total: 382ms remaining: 769ms 180: learn: 0.0168179 total: 384ms remaining: 766ms 181: learn: 0.0167105 total: 387ms remaining: 765ms 182: learn: 0.0166110 total: 389ms remaining: 763ms 183: learn: 0.0164435 total: 391ms remaining: 760ms 184: learn: 0.0163170 total: 393ms remaining: 759ms 185: learn: 0.0163087 total: 395ms remaining: 757ms 186: learn: 0.0162328 total: 397ms remaining: 754ms 187: learn: 0.0161532 total: 399ms remaining: 752ms 188: learn: 0.0160569 total: 402ms remaining: 750ms 189: learn: 0.0159766 total: 405ms remaining: 750ms 190: learn: 0.0158342 total: 407ms remaining: 747ms 191: learn: 0.0158040 total: 409ms remaining: 745ms 192: learn: 0.0156747 total: 411ms remaining: 744ms 193: learn: 0.0155224 total: 413ms remaining: 741ms 194: learn: 0.0154978 total: 415ms remaining: 739ms 195: learn: 0.0154131 total: 417ms remaining: 736ms 196: learn: 0.0153022 total: 419ms remaining: 735ms 197: learn: 0.0151789 total: 421ms remaining: 732ms 198: learn: 0.0150624 total: 423ms remaining: 729ms 199: learn: 0.0148970 total: 425ms remaining: 726ms 200: learn: 0.0148668 total: 426ms remaining: 723ms 201: learn: 0.0147692 total: 428ms remaining: 721ms 202: learn: 0.0145937 total: 430ms remaining: 718ms 203: learn: 0.0144599 total: 432ms remaining: 716ms 204: learn: 0.0143734 total: 434ms remaining: 714ms 205: learn: 0.0142767 total: 436ms remaining: 711ms 206: learn: 0.0141985 total: 437ms remaining: 708ms 207: learn: 0.0141228 total: 444ms remaining: 713ms 208: learn: 0.0140408 total: 446ms remaining: 711ms 209: learn: 0.0140172 total: 448ms remaining: 708ms 210: learn: 0.0139360 total: 449ms remaining: 705ms 211: learn: 0.0138244 total: 451ms remaining: 702ms 212: learn: 0.0136866 total: 452ms remaining: 699ms 213: learn: 0.0136205 total: 454ms remaining: 696ms 214: learn: 0.0135128 total: 456ms remaining: 693ms 215: learn: 0.0134930 total: 457ms remaining: 690ms 216: learn: 0.0133793 total: 459ms remaining: 688ms 217: learn: 0.0132949 total: 461ms remaining: 685ms 218: learn: 0.0132946 total: 463ms remaining: 683ms 219: learn: 0.0131948 total: 464ms remaining: 680ms 220: learn: 0.0131518 total: 466ms remaining: 677ms 221: learn: 0.0131115 total: 468ms remaining: 674ms 222: learn: 0.0130153 total: 470ms remaining: 672ms 223: learn: 0.0129505 total: 471ms remaining: 669ms 224: learn: 0.0128907 total: 473ms remaining: 666ms 225: learn: 0.0127611 total: 474ms remaining: 663ms 226: learn: 0.0127220 total: 476ms remaining: 660ms 227: learn: 0.0126196 total: 477ms remaining: 658ms 228: learn: 0.0125454 total: 479ms remaining: 655ms 229: learn: 0.0124998 total: 481ms remaining: 652ms 230: learn: 0.0124460 total: 483ms remaining: 650ms 231: learn: 0.0123692 total: 484ms remaining: 647ms 232: learn: 0.0122858 total: 486ms remaining: 644ms 233: learn: 0.0121886 total: 487ms remaining: 642ms 234: learn: 0.0121034 total: 489ms remaining: 639ms 235: learn: 0.0120713 total: 491ms remaining: 636ms 236: learn: 0.0119915 total: 492ms remaining: 633ms 237: learn: 0.0119099 total: 494ms remaining: 631ms 238: learn: 0.0118097 total: 496ms remaining: 628ms 239: learn: 0.0117089 total: 497ms remaining: 626ms 240: learn: 0.0116303 total: 499ms remaining: 623ms 241: learn: 0.0115897 total: 501ms remaining: 621ms 242: learn: 0.0115370 total: 503ms remaining: 619ms 243: learn: 0.0114906 total: 505ms remaining: 617ms 244: learn: 0.0114591 total: 507ms remaining: 614ms 245: learn: 0.0114109 total: 509ms remaining: 612ms 246: learn: 0.0113282 total: 510ms remaining: 609ms 247: learn: 0.0112579 total: 512ms remaining: 607ms 248: learn: 0.0112051 total: 514ms remaining: 604ms 249: learn: 0.0111481 total: 515ms remaining: 602ms 250: learn: 0.0110605 total: 517ms remaining: 600ms 251: learn: 0.0109803 total: 519ms remaining: 597ms 252: learn: 0.0109086 total: 521ms remaining: 595ms 253: learn: 0.0108440 total: 522ms remaining: 592ms 254: learn: 0.0108030 total: 524ms remaining: 589ms 255: learn: 0.0107586 total: 526ms remaining: 587ms 256: learn: 0.0107168 total: 527ms remaining: 584ms 257: learn: 0.0106796 total: 529ms remaining: 582ms 258: learn: 0.0106510 total: 530ms remaining: 580ms 259: learn: 0.0105805 total: 532ms remaining: 577ms 260: learn: 0.0105167 total: 534ms remaining: 575ms 261: learn: 0.0104865 total: 536ms remaining: 573ms 262: learn: 0.0104374 total: 538ms remaining: 570ms 263: learn: 0.0103978 total: 540ms remaining: 568ms 264: learn: 0.0103648 total: 541ms remaining: 566ms 265: learn: 0.0103257 total: 543ms remaining: 563ms 266: learn: 0.0102896 total: 545ms remaining: 561ms 267: learn: 0.0102497 total: 547ms remaining: 559ms 268: learn: 0.0102071 total: 548ms remaining: 557ms 269: learn: 0.0101759 total: 550ms remaining: 554ms 270: learn: 0.0101334 total: 552ms remaining: 552ms 271: learn: 0.0100722 total: 554ms remaining: 550ms 272: learn: 0.0100382 total: 555ms remaining: 547ms 273: learn: 0.0100049 total: 557ms remaining: 545ms 274: learn: 0.0099518 total: 559ms remaining: 542ms 275: learn: 0.0099121 total: 560ms remaining: 540ms 276: learn: 0.0098895 total: 562ms remaining: 537ms 277: learn: 0.0098689 total: 564ms remaining: 535ms 278: learn: 0.0098164 total: 565ms remaining: 533ms 279: learn: 0.0097614 total: 568ms remaining: 531ms 280: learn: 0.0097141 total: 570ms remaining: 529ms 281: learn: 0.0096746 total: 571ms remaining: 527ms 282: learn: 0.0096263 total: 573ms remaining: 525ms 283: learn: 0.0095905 total: 575ms remaining: 522ms 284: learn: 0.0095696 total: 577ms remaining: 520ms 285: learn: 0.0095399 total: 578ms remaining: 518ms 286: learn: 0.0094845 total: 580ms remaining: 515ms 287: learn: 0.0094477 total: 582ms remaining: 513ms 288: learn: 0.0094477 total: 583ms remaining: 511ms 289: learn: 0.0094270 total: 585ms remaining: 508ms 290: learn: 0.0093635 total: 586ms remaining: 506ms 291: learn: 0.0093164 total: 588ms remaining: 503ms 292: learn: 0.0092653 total: 590ms remaining: 501ms 293: learn: 0.0092346 total: 592ms remaining: 499ms 294: learn: 0.0092177 total: 594ms remaining: 498ms 295: learn: 0.0092176 total: 596ms remaining: 495ms 296: learn: 0.0091860 total: 598ms remaining: 493ms 297: learn: 0.0091565 total: 600ms remaining: 491ms 298: learn: 0.0091310 total: 602ms remaining: 489ms 299: learn: 0.0090675 total: 604ms remaining: 487ms 300: learn: 0.0090392 total: 606ms remaining: 485ms 301: learn: 0.0089977 total: 608ms remaining: 483ms 302: learn: 0.0089711 total: 610ms remaining: 481ms 303: learn: 0.0089252 total: 612ms remaining: 479ms 304: learn: 0.0088844 total: 613ms remaining: 477ms 305: learn: 0.0088508 total: 615ms remaining: 474ms 306: learn: 0.0088260 total: 617ms remaining: 472ms 307: learn: 0.0087746 total: 619ms remaining: 470ms 308: learn: 0.0087366 total: 620ms remaining: 468ms 309: learn: 0.0087130 total: 622ms remaining: 466ms 310: learn: 0.0086941 total: 624ms remaining: 463ms 311: learn: 0.0086587 total: 626ms remaining: 461ms 312: learn: 0.0086333 total: 628ms remaining: 460ms 313: learn: 0.0086224 total: 630ms remaining: 457ms 314: learn: 0.0085631 total: 632ms remaining: 456ms 315: learn: 0.0085411 total: 634ms remaining: 454ms 316: learn: 0.0085233 total: 636ms remaining: 452ms 317: learn: 0.0085053 total: 638ms remaining: 450ms 318: learn: 0.0084924 total: 641ms remaining: 448ms 319: learn: 0.0084453 total: 643ms remaining: 446ms 320: learn: 0.0084176 total: 644ms remaining: 443ms 321: learn: 0.0083733 total: 646ms remaining: 441ms 322: learn: 0.0083364 total: 647ms remaining: 439ms 323: learn: 0.0083056 total: 649ms remaining: 437ms 324: learn: 0.0082706 total: 651ms remaining: 435ms 325: learn: 0.0082546 total: 652ms remaining: 432ms 326: learn: 0.0082060 total: 654ms remaining: 430ms 327: learn: 0.0081851 total: 656ms remaining: 428ms 328: learn: 0.0081616 total: 658ms remaining: 426ms 329: learn: 0.0081207 total: 660ms remaining: 424ms 330: learn: 0.0080996 total: 662ms remaining: 422ms 331: learn: 0.0080796 total: 663ms remaining: 419ms 332: learn: 0.0080222 total: 665ms remaining: 417ms 333: learn: 0.0080036 total: 667ms remaining: 415ms 334: learn: 0.0079877 total: 668ms remaining: 413ms 335: learn: 0.0079529 total: 670ms remaining: 411ms 336: learn: 0.0079387 total: 672ms remaining: 409ms 337: learn: 0.0079241 total: 673ms remaining: 406ms 338: learn: 0.0078904 total: 675ms remaining: 404ms 339: learn: 0.0078594 total: 677ms remaining: 402ms 340: learn: 0.0078594 total: 678ms remaining: 400ms 341: learn: 0.0078235 total: 679ms remaining: 397ms 342: learn: 0.0077847 total: 681ms remaining: 395ms 343: learn: 0.0077578 total: 683ms remaining: 393ms 344: learn: 0.0077359 total: 685ms remaining: 391ms 345: learn: 0.0077018 total: 687ms remaining: 389ms 346: learn: 0.0076854 total: 688ms remaining: 387ms 347: learn: 0.0076572 total: 690ms remaining: 385ms 348: learn: 0.0076572 total: 691ms remaining: 382ms 349: learn: 0.0076214 total: 693ms remaining: 380ms 350: learn: 0.0076004 total: 695ms remaining: 378ms 351: learn: 0.0076004 total: 696ms remaining: 376ms 352: learn: 0.0075738 total: 698ms remaining: 374ms 353: learn: 0.0075380 total: 699ms remaining: 371ms 354: learn: 0.0075058 total: 701ms remaining: 369ms 355: learn: 0.0074766 total: 703ms remaining: 367ms 356: learn: 0.0074451 total: 705ms remaining: 365ms 357: learn: 0.0074200 total: 706ms remaining: 363ms 358: learn: 0.0073893 total: 708ms remaining: 361ms 359: learn: 0.0073616 total: 710ms remaining: 359ms 360: learn: 0.0073407 total: 711ms remaining: 356ms 361: learn: 0.0073029 total: 713ms remaining: 354ms 362: learn: 0.0072710 total: 714ms remaining: 352ms 363: learn: 0.0072467 total: 716ms remaining: 350ms 364: learn: 0.0072267 total: 718ms remaining: 348ms 365: learn: 0.0071964 total: 720ms remaining: 346ms 366: learn: 0.0071689 total: 722ms remaining: 344ms 367: learn: 0.0071493 total: 724ms remaining: 342ms 368: learn: 0.0071309 total: 726ms remaining: 340ms 369: learn: 0.0071094 total: 728ms remaining: 338ms 370: learn: 0.0070990 total: 730ms remaining: 336ms 371: learn: 0.0070990 total: 732ms remaining: 334ms 372: learn: 0.0070714 total: 734ms remaining: 332ms 373: learn: 0.0070380 total: 735ms remaining: 330ms 374: learn: 0.0070380 total: 737ms remaining: 328ms 375: learn: 0.0070377 total: 738ms remaining: 326ms 376: learn: 0.0070376 total: 740ms remaining: 324ms 377: learn: 0.0070376 total: 741ms remaining: 322ms 378: learn: 0.0070377 total: 743ms remaining: 319ms 379: learn: 0.0070375 total: 744ms remaining: 317ms 380: learn: 0.0070375 total: 746ms remaining: 315ms 381: learn: 0.0070375 total: 747ms remaining: 313ms 382: learn: 0.0070375 total: 749ms remaining: 311ms 383: learn: 0.0070375 total: 764ms remaining: 314ms 384: learn: 0.0070375 total: 766ms remaining: 312ms 385: learn: 0.0070374 total: 767ms remaining: 310ms 386: learn: 0.0070374 total: 768ms remaining: 308ms 387: learn: 0.0070374 total: 770ms remaining: 306ms 388: learn: 0.0070374 total: 771ms remaining: 303ms 389: learn: 0.0070374 total: 772ms remaining: 301ms 390: learn: 0.0070374 total: 774ms remaining: 299ms 391: learn: 0.0070374 total: 775ms remaining: 297ms 392: learn: 0.0070374 total: 777ms remaining: 295ms 393: learn: 0.0070372 total: 779ms remaining: 293ms 394: learn: 0.0070120 total: 782ms remaining: 291ms 395: learn: 0.0070120 total: 784ms remaining: 289ms 396: learn: 0.0070119 total: 785ms remaining: 287ms 397: learn: 0.0070119 total: 787ms remaining: 285ms 398: learn: 0.0070118 total: 789ms remaining: 283ms 399: learn: 0.0070117 total: 790ms remaining: 281ms 400: learn: 0.0070117 total: 792ms remaining: 278ms 401: learn: 0.0070117 total: 794ms remaining: 276ms 402: learn: 0.0070118 total: 795ms remaining: 274ms 403: learn: 0.0070118 total: 796ms remaining: 272ms 404: learn: 0.0070118 total: 798ms remaining: 270ms 405: learn: 0.0070118 total: 799ms remaining: 268ms 406: learn: 0.0070118 total: 801ms remaining: 266ms 407: learn: 0.0070116 total: 802ms remaining: 263ms 408: learn: 0.0070117 total: 804ms remaining: 261ms 409: learn: 0.0070117 total: 805ms remaining: 259ms 410: learn: 0.0070117 total: 807ms remaining: 257ms 411: learn: 0.0070117 total: 809ms remaining: 255ms 412: learn: 0.0070117 total: 810ms remaining: 253ms 413: learn: 0.0070116 total: 812ms remaining: 251ms 414: learn: 0.0070116 total: 814ms remaining: 249ms 415: learn: 0.0070116 total: 816ms remaining: 247ms 416: learn: 0.0070115 total: 818ms remaining: 245ms 417: learn: 0.0070116 total: 819ms remaining: 243ms 418: learn: 0.0070115 total: 821ms remaining: 241ms 419: learn: 0.0070115 total: 823ms remaining: 239ms 420: learn: 0.0070116 total: 824ms remaining: 237ms 421: learn: 0.0070116 total: 826ms remaining: 235ms 422: learn: 0.0070116 total: 827ms remaining: 233ms 423: learn: 0.0070114 total: 829ms remaining: 231ms 424: learn: 0.0070115 total: 830ms remaining: 228ms 425: learn: 0.0070113 total: 832ms remaining: 226ms 426: learn: 0.0070113 total: 833ms remaining: 224ms 427: learn: 0.0070113 total: 834ms remaining: 222ms 428: learn: 0.0070113 total: 836ms remaining: 220ms 429: learn: 0.0070113 total: 838ms remaining: 218ms 430: learn: 0.0070113 total: 839ms remaining: 216ms 431: learn: 0.0070112 total: 840ms remaining: 214ms 432: learn: 0.0070112 total: 842ms remaining: 212ms 433: learn: 0.0070112 total: 843ms remaining: 210ms 434: learn: 0.0070111 total: 845ms remaining: 208ms 435: learn: 0.0070111 total: 846ms remaining: 206ms 436: learn: 0.0070110 total: 848ms remaining: 204ms 437: learn: 0.0070111 total: 849ms remaining: 202ms 438: learn: 0.0070111 total: 850ms remaining: 200ms 439: learn: 0.0070109 total: 852ms remaining: 197ms 440: learn: 0.0070108 total: 853ms remaining: 195ms 441: learn: 0.0070107 total: 855ms remaining: 193ms 442: learn: 0.0070107 total: 856ms remaining: 191ms 443: learn: 0.0070107 total: 858ms remaining: 189ms 444: learn: 0.0070107 total: 859ms remaining: 187ms 445: learn: 0.0070108 total: 860ms remaining: 185ms 446: learn: 0.0070108 total: 862ms remaining: 183ms 447: learn: 0.0070108 total: 863ms remaining: 181ms 448: learn: 0.0070108 total: 865ms remaining: 179ms 449: learn: 0.0070107 total: 866ms remaining: 177ms 450: learn: 0.0070106 total: 868ms remaining: 175ms 451: learn: 0.0070106 total: 869ms remaining: 173ms 452: learn: 0.0070106 total: 870ms remaining: 171ms 453: learn: 0.0070105 total: 872ms remaining: 169ms 454: learn: 0.0070105 total: 873ms remaining: 167ms 455: learn: 0.0070104 total: 875ms remaining: 165ms 456: learn: 0.0070104 total: 876ms remaining: 163ms 457: learn: 0.0070104 total: 878ms remaining: 161ms 458: learn: 0.0070103 total: 879ms remaining: 159ms 459: learn: 0.0070103 total: 881ms remaining: 157ms 460: learn: 0.0070103 total: 883ms remaining: 155ms 461: learn: 0.0070102 total: 884ms remaining: 153ms 462: learn: 0.0070102 total: 886ms remaining: 151ms 463: learn: 0.0070102 total: 887ms remaining: 149ms 464: learn: 0.0070102 total: 889ms remaining: 147ms 465: learn: 0.0070101 total: 890ms remaining: 145ms 466: learn: 0.0070100 total: 892ms remaining: 143ms 467: learn: 0.0070100 total: 894ms remaining: 141ms 468: learn: 0.0070100 total: 896ms remaining: 139ms 469: learn: 0.0070099 total: 909ms remaining: 139ms 470: learn: 0.0070098 total: 911ms remaining: 137ms 471: learn: 0.0070099 total: 912ms remaining: 135ms 472: learn: 0.0070099 total: 914ms remaining: 133ms 473: learn: 0.0070097 total: 915ms remaining: 131ms 474: learn: 0.0070096 total: 917ms remaining: 129ms 475: learn: 0.0070095 total: 919ms remaining: 127ms 476: learn: 0.0070095 total: 920ms remaining: 125ms 477: learn: 0.0070095 total: 922ms remaining: 123ms 478: learn: 0.0070093 total: 924ms remaining: 121ms 479: learn: 0.0070093 total: 925ms remaining: 119ms 480: learn: 0.0070093 total: 926ms remaining: 117ms 481: learn: 0.0070092 total: 928ms remaining: 115ms 482: learn: 0.0070091 total: 929ms remaining: 114ms 483: learn: 0.0070091 total: 931ms remaining: 112ms 484: learn: 0.0070090 total: 932ms remaining: 110ms 485: learn: 0.0070089 total: 934ms remaining: 108ms 486: learn: 0.0070088 total: 935ms remaining: 106ms 487: learn: 0.0070088 total: 937ms remaining: 104ms 488: learn: 0.0070088 total: 938ms remaining: 102ms 489: learn: 0.0070087 total: 939ms remaining: 99.7ms 490: learn: 0.0070087 total: 941ms remaining: 97.7ms 491: learn: 0.0070087 total: 942ms remaining: 95.8ms 492: learn: 0.0070086 total: 944ms remaining: 93.8ms 493: learn: 0.0070086 total: 946ms remaining: 91.9ms 494: learn: 0.0070085 total: 947ms remaining: 89.9ms 495: learn: 0.0070084 total: 949ms remaining: 88ms 496: learn: 0.0070084 total: 951ms remaining: 86.1ms 497: learn: 0.0070084 total: 952ms remaining: 84.1ms 498: learn: 0.0070082 total: 954ms remaining: 82.2ms 499: learn: 0.0070081 total: 956ms remaining: 80.3ms 500: learn: 0.0070081 total: 957ms remaining: 78.3ms 501: learn: 0.0070080 total: 958ms remaining: 76.4ms 502: learn: 0.0070080 total: 960ms remaining: 74.4ms 503: learn: 0.0070080 total: 961ms remaining: 72.5ms 504: learn: 0.0070080 total: 962ms remaining: 70.5ms 505: learn: 0.0070080 total: 964ms remaining: 68.6ms 506: learn: 0.0070080 total: 965ms remaining: 66.6ms 507: learn: 0.0070080 total: 966ms remaining: 64.7ms 508: learn: 0.0070080 total: 968ms remaining: 62.7ms 509: learn: 0.0070080 total: 969ms remaining: 60.8ms 510: learn: 0.0070080 total: 971ms remaining: 58.9ms 511: learn: 0.0070080 total: 972ms remaining: 57ms 512: learn: 0.0070080 total: 974ms remaining: 55ms 513: learn: 0.0070080 total: 975ms remaining: 53.1ms 514: learn: 0.0070080 total: 976ms remaining: 51.2ms 515: learn: 0.0070080 total: 978ms remaining: 49.3ms 516: learn: 0.0070080 total: 979ms remaining: 47.3ms 517: learn: 0.0070080 total: 980ms remaining: 45.4ms 518: learn: 0.0070080 total: 982ms remaining: 43.5ms 519: learn: 0.0070080 total: 983ms remaining: 41.6ms 520: learn: 0.0070080 total: 984ms remaining: 39.7ms 521: learn: 0.0070080 total: 985ms remaining: 37.8ms 522: learn: 0.0070080 total: 987ms remaining: 35.8ms 523: learn: 0.0070080 total: 988ms remaining: 33.9ms 524: learn: 0.0070080 total: 989ms remaining: 32ms 525: learn: 0.0070080 total: 991ms remaining: 30.1ms 526: learn: 0.0070080 total: 992ms remaining: 28.2ms 527: learn: 0.0070080 total: 994ms remaining: 26.3ms 528: learn: 0.0070080 total: 995ms remaining: 24.5ms 529: learn: 0.0070080 total: 997ms remaining: 22.6ms 530: learn: 0.0070080 total: 998ms remaining: 20.7ms 531: learn: 0.0070080 total: 999ms remaining: 18.8ms 532: learn: 0.0070080 total: 1s remaining: 16.9ms 533: learn: 0.0070080 total: 1s remaining: 15ms 534: learn: 0.0070080 total: 1s remaining: 13.1ms 535: learn: 0.0070080 total: 1.01s remaining: 11.3ms 536: learn: 0.0070080 total: 1.01s remaining: 9.38ms 537: learn: 0.0070080 total: 1.01s remaining: 7.5ms 538: learn: 0.0070080 total: 1.01s remaining: 5.63ms 539: learn: 0.0070080 total: 1.01s remaining: 3.75ms 540: learn: 0.0070080 total: 1.01s remaining: 1.87ms 541: learn: 0.0070080 total: 1.01s remaining: 0us 0: learn: 0.5491996 total: 2.14ms remaining: 1.16s 1: learn: 0.4584767 total: 4.81ms remaining: 1.3s 2: learn: 0.4086197 total: 6.79ms remaining: 1.22s 3: learn: 0.3718177 total: 9.03ms remaining: 1.21s 4: learn: 0.3444828 total: 11.1ms remaining: 1.19s 5: learn: 0.3215668 total: 12.9ms remaining: 1.16s 6: learn: 0.3100053 total: 14.7ms remaining: 1.12s 7: learn: 0.2943616 total: 16.4ms remaining: 1.1s 8: learn: 0.2835224 total: 18.2ms remaining: 1.07s 9: learn: 0.2678337 total: 32.3ms remaining: 1.72s 10: learn: 0.2547700 total: 34.1ms remaining: 1.65s 11: learn: 0.2446138 total: 36ms remaining: 1.59s 12: learn: 0.2375026 total: 37.8ms remaining: 1.54s 13: learn: 0.2333748 total: 39.5ms remaining: 1.49s 14: learn: 0.2249006 total: 41ms remaining: 1.44s 15: learn: 0.2209905 total: 42.6ms remaining: 1.4s 16: learn: 0.2168927 total: 44.3ms remaining: 1.37s 17: learn: 0.2111873 total: 45.8ms remaining: 1.33s 18: learn: 0.2080679 total: 47.7ms remaining: 1.31s 19: learn: 0.2019865 total: 49.3ms remaining: 1.28s 20: learn: 0.1978650 total: 51ms remaining: 1.27s 21: learn: 0.1954345 total: 52.8ms remaining: 1.25s 22: learn: 0.1905390 total: 55.1ms remaining: 1.24s 23: learn: 0.1871165 total: 56.8ms remaining: 1.23s 24: learn: 0.1801434 total: 58.5ms remaining: 1.21s 25: learn: 0.1759724 total: 60.4ms remaining: 1.2s 26: learn: 0.1743086 total: 62.1ms remaining: 1.19s 27: learn: 0.1710756 total: 63.9ms remaining: 1.17s 28: learn: 0.1679764 total: 65.6ms remaining: 1.16s 29: learn: 0.1658229 total: 67.3ms remaining: 1.15s 30: learn: 0.1621832 total: 69ms remaining: 1.14s 31: learn: 0.1564367 total: 70.7ms remaining: 1.13s 32: learn: 0.1544909 total: 72.3ms remaining: 1.11s 33: learn: 0.1512800 total: 74.1ms remaining: 1.11s 34: learn: 0.1476900 total: 75.8ms remaining: 1.1s 35: learn: 0.1452492 total: 77.3ms remaining: 1.08s 36: learn: 0.1437919 total: 79.2ms remaining: 1.08s 37: learn: 0.1427559 total: 80.7ms remaining: 1.07s 38: learn: 0.1382236 total: 82.7ms remaining: 1.07s 39: learn: 0.1343272 total: 84.9ms remaining: 1.06s 40: learn: 0.1292781 total: 87ms remaining: 1.06s 41: learn: 0.1258115 total: 88.8ms remaining: 1.06s 42: learn: 0.1216495 total: 90.5ms remaining: 1.05s 43: learn: 0.1183274 total: 92.3ms remaining: 1.04s 44: learn: 0.1156021 total: 94.3ms remaining: 1.04s 45: learn: 0.1144258 total: 96.1ms remaining: 1.04s 46: learn: 0.1115544 total: 98ms remaining: 1.03s 47: learn: 0.1092263 total: 99.9ms remaining: 1.03s 48: learn: 0.1078875 total: 102ms remaining: 1.03s 49: learn: 0.1051193 total: 104ms remaining: 1.02s 50: learn: 0.1019427 total: 105ms remaining: 1.01s 51: learn: 0.0993342 total: 107ms remaining: 1.01s 52: learn: 0.0960944 total: 109ms remaining: 1s 53: learn: 0.0952106 total: 110ms remaining: 997ms 54: learn: 0.0926787 total: 112ms remaining: 992ms 55: learn: 0.0905204 total: 114ms remaining: 988ms 56: learn: 0.0881470 total: 116ms remaining: 983ms 57: learn: 0.0862586 total: 117ms remaining: 979ms 58: learn: 0.0854314 total: 119ms remaining: 974ms 59: learn: 0.0830519 total: 121ms remaining: 969ms 60: learn: 0.0805877 total: 122ms remaining: 964ms 61: learn: 0.0797326 total: 124ms remaining: 958ms 62: learn: 0.0778578 total: 126ms remaining: 956ms 63: learn: 0.0765284 total: 127ms remaining: 951ms 64: learn: 0.0754756 total: 129ms remaining: 949ms 65: learn: 0.0742010 total: 131ms remaining: 944ms 66: learn: 0.0728320 total: 133ms remaining: 940ms 67: learn: 0.0722048 total: 134ms remaining: 936ms 68: learn: 0.0709477 total: 136ms remaining: 932ms 69: learn: 0.0706947 total: 138ms remaining: 929ms 70: learn: 0.0702756 total: 139ms remaining: 924ms 71: learn: 0.0700332 total: 141ms remaining: 922ms 72: learn: 0.0691202 total: 143ms remaining: 918ms 73: learn: 0.0690192 total: 145ms remaining: 915ms 74: learn: 0.0677176 total: 146ms remaining: 912ms 75: learn: 0.0658946 total: 148ms remaining: 909ms 76: learn: 0.0658347 total: 150ms remaining: 904ms 77: learn: 0.0657638 total: 151ms remaining: 900ms 78: learn: 0.0645984 total: 153ms remaining: 898ms 79: learn: 0.0627635 total: 155ms remaining: 895ms 80: learn: 0.0614829 total: 157ms remaining: 893ms 81: learn: 0.0597102 total: 158ms remaining: 889ms 82: learn: 0.0585821 total: 161ms remaining: 888ms 83: learn: 0.0582856 total: 162ms remaining: 884ms 84: learn: 0.0572774 total: 164ms remaining: 880ms 85: learn: 0.0567529 total: 165ms remaining: 876ms 86: learn: 0.0555929 total: 167ms remaining: 873ms 87: learn: 0.0549530 total: 169ms remaining: 870ms 88: learn: 0.0536640 total: 170ms remaining: 866ms 89: learn: 0.0525491 total: 172ms remaining: 863ms 90: learn: 0.0518058 total: 174ms remaining: 860ms 91: learn: 0.0514010 total: 175ms remaining: 858ms 92: learn: 0.0512733 total: 177ms remaining: 856ms 93: learn: 0.0507559 total: 179ms remaining: 853ms 94: learn: 0.0504256 total: 181ms remaining: 851ms 95: learn: 0.0494344 total: 182ms remaining: 848ms 96: learn: 0.0488593 total: 184ms remaining: 845ms 97: learn: 0.0488266 total: 186ms remaining: 843ms 98: learn: 0.0478486 total: 188ms remaining: 841ms 99: learn: 0.0472756 total: 190ms remaining: 838ms 100: learn: 0.0465664 total: 191ms remaining: 836ms 101: learn: 0.0455032 total: 193ms remaining: 833ms 102: learn: 0.0452260 total: 195ms remaining: 829ms 103: learn: 0.0448881 total: 196ms remaining: 827ms 104: learn: 0.0444524 total: 198ms remaining: 824ms 105: learn: 0.0440498 total: 200ms remaining: 821ms 106: learn: 0.0437790 total: 201ms remaining: 818ms 107: learn: 0.0437025 total: 203ms remaining: 815ms 108: learn: 0.0429287 total: 205ms remaining: 813ms 109: learn: 0.0428161 total: 206ms remaining: 810ms 110: learn: 0.0423693 total: 208ms remaining: 808ms 111: learn: 0.0422522 total: 210ms remaining: 805ms 112: learn: 0.0420165 total: 211ms remaining: 802ms 113: learn: 0.0418796 total: 213ms remaining: 799ms 114: learn: 0.0413482 total: 214ms remaining: 796ms 115: learn: 0.0407233 total: 216ms remaining: 793ms 116: learn: 0.0400764 total: 217ms remaining: 790ms 117: learn: 0.0392573 total: 219ms remaining: 787ms 118: learn: 0.0385676 total: 221ms remaining: 785ms 119: learn: 0.0384104 total: 223ms remaining: 783ms 120: learn: 0.0382055 total: 224ms remaining: 781ms 121: learn: 0.0375090 total: 226ms remaining: 778ms 122: learn: 0.0373248 total: 228ms remaining: 775ms 123: learn: 0.0372644 total: 229ms remaining: 772ms 124: learn: 0.0372370 total: 231ms remaining: 770ms 125: learn: 0.0371094 total: 232ms remaining: 767ms 126: learn: 0.0368897 total: 234ms remaining: 764ms 127: learn: 0.0368695 total: 235ms remaining: 762ms 128: learn: 0.0367788 total: 237ms remaining: 759ms 129: learn: 0.0363396 total: 239ms remaining: 756ms 130: learn: 0.0360322 total: 240ms remaining: 753ms 131: learn: 0.0357142 total: 242ms remaining: 750ms 132: learn: 0.0354171 total: 243ms remaining: 748ms 133: learn: 0.0352904 total: 245ms remaining: 746ms 134: learn: 0.0346809 total: 247ms remaining: 744ms 135: learn: 0.0341955 total: 248ms remaining: 742ms 136: learn: 0.0341798 total: 250ms remaining: 740ms 137: learn: 0.0336424 total: 252ms remaining: 739ms 138: learn: 0.0331778 total: 254ms remaining: 737ms 139: learn: 0.0327663 total: 256ms remaining: 735ms 140: learn: 0.0327392 total: 257ms remaining: 732ms 141: learn: 0.0326788 total: 259ms remaining: 730ms 142: learn: 0.0326254 total: 261ms remaining: 728ms 143: learn: 0.0323233 total: 263ms remaining: 726ms 144: learn: 0.0322582 total: 264ms remaining: 724ms 145: learn: 0.0317843 total: 266ms remaining: 721ms 146: learn: 0.0317243 total: 268ms remaining: 719ms 147: learn: 0.0316732 total: 269ms remaining: 716ms 148: learn: 0.0313265 total: 271ms remaining: 714ms 149: learn: 0.0308640 total: 272ms remaining: 712ms 150: learn: 0.0302926 total: 274ms remaining: 710ms 151: learn: 0.0301973 total: 276ms remaining: 707ms 152: learn: 0.0297139 total: 277ms remaining: 705ms 153: learn: 0.0292031 total: 279ms remaining: 704ms 154: learn: 0.0288717 total: 281ms remaining: 703ms 155: learn: 0.0285531 total: 283ms remaining: 701ms 156: learn: 0.0285448 total: 285ms remaining: 699ms 157: learn: 0.0285367 total: 287ms remaining: 697ms 158: learn: 0.0285288 total: 288ms remaining: 695ms 159: learn: 0.0285210 total: 290ms remaining: 693ms 160: learn: 0.0281244 total: 292ms remaining: 691ms 161: learn: 0.0279933 total: 294ms remaining: 689ms 162: learn: 0.0278671 total: 295ms remaining: 687ms 163: learn: 0.0277441 total: 297ms remaining: 684ms 164: learn: 0.0273890 total: 299ms remaining: 682ms 165: learn: 0.0270323 total: 300ms remaining: 680ms 166: learn: 0.0267658 total: 302ms remaining: 678ms 167: learn: 0.0265362 total: 303ms remaining: 675ms 168: learn: 0.0264609 total: 305ms remaining: 673ms 169: learn: 0.0261123 total: 307ms remaining: 671ms 170: learn: 0.0258429 total: 308ms remaining: 669ms 171: learn: 0.0256460 total: 310ms remaining: 667ms 172: learn: 0.0253749 total: 312ms remaining: 665ms 173: learn: 0.0251048 total: 314ms remaining: 664ms 174: learn: 0.0249603 total: 316ms remaining: 662ms 175: learn: 0.0246855 total: 323ms remaining: 672ms 176: learn: 0.0244819 total: 325ms remaining: 670ms 177: learn: 0.0243482 total: 326ms remaining: 667ms 178: learn: 0.0240683 total: 328ms remaining: 665ms 179: learn: 0.0238391 total: 329ms remaining: 663ms 180: learn: 0.0234737 total: 331ms remaining: 660ms 181: learn: 0.0232366 total: 332ms remaining: 658ms 182: learn: 0.0231651 total: 334ms remaining: 656ms 183: learn: 0.0230062 total: 336ms remaining: 654ms 184: learn: 0.0228281 total: 338ms remaining: 652ms 185: learn: 0.0227033 total: 340ms remaining: 650ms 186: learn: 0.0225104 total: 342ms remaining: 648ms 187: learn: 0.0224243 total: 343ms remaining: 646ms 188: learn: 0.0222860 total: 345ms remaining: 645ms 189: learn: 0.0220951 total: 347ms remaining: 642ms 190: learn: 0.0219317 total: 348ms remaining: 640ms 191: learn: 0.0218020 total: 350ms remaining: 638ms 192: learn: 0.0217787 total: 352ms remaining: 636ms 193: learn: 0.0217541 total: 353ms remaining: 634ms 194: learn: 0.0216767 total: 355ms remaining: 631ms 195: learn: 0.0214434 total: 357ms remaining: 630ms 196: learn: 0.0212828 total: 358ms remaining: 627ms 197: learn: 0.0211429 total: 360ms remaining: 625ms 198: learn: 0.0210032 total: 361ms remaining: 623ms 199: learn: 0.0208148 total: 363ms remaining: 621ms 200: learn: 0.0206214 total: 365ms remaining: 619ms 201: learn: 0.0204114 total: 366ms remaining: 617ms 202: learn: 0.0201603 total: 368ms remaining: 615ms 203: learn: 0.0200097 total: 370ms remaining: 613ms 204: learn: 0.0198237 total: 372ms remaining: 611ms 205: learn: 0.0196778 total: 374ms remaining: 610ms 206: learn: 0.0195442 total: 376ms remaining: 608ms 207: learn: 0.0194843 total: 378ms remaining: 606ms 208: learn: 0.0192832 total: 379ms remaining: 604ms 209: learn: 0.0191905 total: 381ms remaining: 603ms 210: learn: 0.0191126 total: 383ms remaining: 601ms 211: learn: 0.0189343 total: 385ms remaining: 600ms 212: learn: 0.0188549 total: 387ms remaining: 598ms 213: learn: 0.0187489 total: 389ms remaining: 596ms 214: learn: 0.0185988 total: 390ms remaining: 594ms 215: learn: 0.0184942 total: 392ms remaining: 591ms 216: learn: 0.0183743 total: 394ms remaining: 589ms 217: learn: 0.0183716 total: 395ms remaining: 587ms 218: learn: 0.0182012 total: 397ms remaining: 586ms 219: learn: 0.0181077 total: 399ms remaining: 584ms 220: learn: 0.0180019 total: 401ms remaining: 582ms 221: learn: 0.0179676 total: 402ms remaining: 580ms 222: learn: 0.0179421 total: 404ms remaining: 578ms 223: learn: 0.0177593 total: 406ms remaining: 576ms 224: learn: 0.0175644 total: 408ms remaining: 575ms 225: learn: 0.0174342 total: 410ms remaining: 573ms 226: learn: 0.0173300 total: 412ms remaining: 571ms 227: learn: 0.0172312 total: 413ms remaining: 569ms 228: learn: 0.0172073 total: 415ms remaining: 567ms 229: learn: 0.0171363 total: 417ms remaining: 565ms 230: learn: 0.0171211 total: 418ms remaining: 563ms 231: learn: 0.0169439 total: 420ms remaining: 561ms 232: learn: 0.0168994 total: 422ms remaining: 559ms 233: learn: 0.0167528 total: 423ms remaining: 557ms 234: learn: 0.0166250 total: 425ms remaining: 555ms 235: learn: 0.0166091 total: 427ms remaining: 553ms 236: learn: 0.0165886 total: 429ms remaining: 552ms 237: learn: 0.0165013 total: 430ms remaining: 550ms 238: learn: 0.0163812 total: 432ms remaining: 548ms 239: learn: 0.0163507 total: 434ms remaining: 546ms 240: learn: 0.0163385 total: 436ms remaining: 544ms 241: learn: 0.0162554 total: 437ms remaining: 542ms 242: learn: 0.0162069 total: 439ms remaining: 540ms 243: learn: 0.0161955 total: 441ms remaining: 538ms 244: learn: 0.0161624 total: 442ms remaining: 536ms 245: learn: 0.0160191 total: 444ms remaining: 534ms 246: learn: 0.0159633 total: 445ms remaining: 532ms 247: learn: 0.0159478 total: 447ms remaining: 530ms 248: learn: 0.0159158 total: 449ms remaining: 528ms 249: learn: 0.0157653 total: 450ms remaining: 526ms 250: learn: 0.0156864 total: 452ms remaining: 524ms 251: learn: 0.0156019 total: 454ms remaining: 522ms 252: learn: 0.0155296 total: 455ms remaining: 520ms 253: learn: 0.0154777 total: 457ms remaining: 518ms 254: learn: 0.0154676 total: 459ms remaining: 516ms 255: learn: 0.0153433 total: 460ms remaining: 514ms 256: learn: 0.0152946 total: 462ms remaining: 513ms 257: learn: 0.0151937 total: 464ms remaining: 511ms 258: learn: 0.0150850 total: 466ms remaining: 509ms 259: learn: 0.0150325 total: 468ms remaining: 508ms 260: learn: 0.0149446 total: 470ms remaining: 506ms 261: learn: 0.0148487 total: 472ms remaining: 505ms 262: learn: 0.0148391 total: 474ms remaining: 503ms 263: learn: 0.0148125 total: 476ms remaining: 501ms 264: learn: 0.0147902 total: 477ms remaining: 499ms 265: learn: 0.0146636 total: 479ms remaining: 497ms 266: learn: 0.0146548 total: 480ms remaining: 495ms 267: learn: 0.0146082 total: 482ms remaining: 493ms 268: learn: 0.0144882 total: 483ms remaining: 491ms 269: learn: 0.0144773 total: 485ms remaining: 489ms 270: learn: 0.0144069 total: 487ms remaining: 487ms 271: learn: 0.0143268 total: 488ms remaining: 485ms 272: learn: 0.0142463 total: 491ms remaining: 483ms 273: learn: 0.0141824 total: 492ms remaining: 482ms 274: learn: 0.0141383 total: 494ms remaining: 480ms 275: learn: 0.0140757 total: 496ms remaining: 478ms 276: learn: 0.0140527 total: 512ms remaining: 490ms 277: learn: 0.0139931 total: 514ms remaining: 488ms 278: learn: 0.0138964 total: 516ms remaining: 486ms 279: learn: 0.0138510 total: 517ms remaining: 484ms 280: learn: 0.0138109 total: 519ms remaining: 482ms 281: learn: 0.0138023 total: 520ms remaining: 480ms 282: learn: 0.0136962 total: 522ms remaining: 478ms 283: learn: 0.0135948 total: 524ms remaining: 476ms 284: learn: 0.0135094 total: 526ms remaining: 474ms 285: learn: 0.0134734 total: 528ms remaining: 472ms 286: learn: 0.0134734 total: 529ms remaining: 470ms 287: learn: 0.0133871 total: 531ms remaining: 468ms 288: learn: 0.0133212 total: 533ms remaining: 466ms 289: learn: 0.0132540 total: 535ms remaining: 465ms 290: learn: 0.0131670 total: 536ms remaining: 463ms 291: learn: 0.0131200 total: 538ms remaining: 461ms 292: learn: 0.0130621 total: 539ms remaining: 458ms 293: learn: 0.0129428 total: 541ms remaining: 456ms 294: learn: 0.0128866 total: 543ms remaining: 454ms 295: learn: 0.0128731 total: 544ms remaining: 452ms 296: learn: 0.0128388 total: 546ms remaining: 450ms 297: learn: 0.0127657 total: 547ms remaining: 448ms 298: learn: 0.0126913 total: 549ms remaining: 446ms 299: learn: 0.0126485 total: 551ms remaining: 444ms 300: learn: 0.0126428 total: 553ms remaining: 442ms 301: learn: 0.0125777 total: 555ms remaining: 441ms 302: learn: 0.0125193 total: 556ms remaining: 439ms 303: learn: 0.0125108 total: 558ms remaining: 437ms 304: learn: 0.0124864 total: 560ms remaining: 435ms 305: learn: 0.0124127 total: 561ms remaining: 433ms 306: learn: 0.0124065 total: 563ms remaining: 431ms 307: learn: 0.0123603 total: 565ms remaining: 429ms 308: learn: 0.0123183 total: 567ms remaining: 428ms 309: learn: 0.0122684 total: 569ms remaining: 426ms 310: learn: 0.0122174 total: 570ms remaining: 424ms 311: learn: 0.0122174 total: 572ms remaining: 421ms 312: learn: 0.0121638 total: 573ms remaining: 419ms 313: learn: 0.0121485 total: 575ms remaining: 417ms 314: learn: 0.0121485 total: 576ms remaining: 415ms 315: learn: 0.0121054 total: 578ms remaining: 413ms 316: learn: 0.0120666 total: 579ms remaining: 411ms 317: learn: 0.0119945 total: 581ms remaining: 409ms 318: learn: 0.0119720 total: 583ms remaining: 408ms 319: learn: 0.0119669 total: 585ms remaining: 406ms 320: learn: 0.0119138 total: 587ms remaining: 404ms 321: learn: 0.0118487 total: 589ms remaining: 402ms 322: learn: 0.0118241 total: 590ms remaining: 400ms 323: learn: 0.0118098 total: 592ms remaining: 398ms 324: learn: 0.0117501 total: 594ms remaining: 396ms 325: learn: 0.0117389 total: 595ms remaining: 394ms 326: learn: 0.0117227 total: 597ms remaining: 392ms 327: learn: 0.0116696 total: 598ms remaining: 390ms 328: learn: 0.0115965 total: 600ms remaining: 388ms 329: learn: 0.0115430 total: 602ms remaining: 387ms 330: learn: 0.0115430 total: 603ms remaining: 384ms 331: learn: 0.0115343 total: 605ms remaining: 382ms 332: learn: 0.0114876 total: 606ms remaining: 380ms 333: learn: 0.0114202 total: 608ms remaining: 379ms 334: learn: 0.0114143 total: 610ms remaining: 377ms 335: learn: 0.0113804 total: 611ms remaining: 375ms 336: learn: 0.0113185 total: 613ms remaining: 373ms 337: learn: 0.0112461 total: 614ms remaining: 371ms 338: learn: 0.0111954 total: 616ms remaining: 369ms 339: learn: 0.0111299 total: 618ms remaining: 367ms 340: learn: 0.0110504 total: 619ms remaining: 365ms 341: learn: 0.0109499 total: 621ms remaining: 363ms 342: learn: 0.0108904 total: 623ms remaining: 361ms 343: learn: 0.0108391 total: 625ms remaining: 359ms 344: learn: 0.0107958 total: 627ms remaining: 358ms 345: learn: 0.0107793 total: 629ms remaining: 356ms 346: learn: 0.0107250 total: 631ms remaining: 355ms 347: learn: 0.0106545 total: 633ms remaining: 353ms 348: learn: 0.0105951 total: 634ms remaining: 351ms 349: learn: 0.0105569 total: 636ms remaining: 349ms 350: learn: 0.0105003 total: 638ms remaining: 347ms 351: learn: 0.0104278 total: 640ms remaining: 345ms 352: learn: 0.0103763 total: 642ms remaining: 344ms 353: learn: 0.0103114 total: 644ms remaining: 342ms 354: learn: 0.0102591 total: 645ms remaining: 340ms 355: learn: 0.0102588 total: 647ms remaining: 338ms 356: learn: 0.0102134 total: 649ms remaining: 336ms 357: learn: 0.0101644 total: 650ms remaining: 334ms 358: learn: 0.0101185 total: 652ms remaining: 332ms 359: learn: 0.0100771 total: 653ms remaining: 330ms 360: learn: 0.0100250 total: 655ms remaining: 329ms 361: learn: 0.0100081 total: 657ms remaining: 327ms 362: learn: 0.0099862 total: 659ms remaining: 325ms 363: learn: 0.0099416 total: 661ms remaining: 323ms 364: learn: 0.0099229 total: 663ms remaining: 321ms 365: learn: 0.0098997 total: 665ms remaining: 320ms 366: learn: 0.0098925 total: 666ms remaining: 318ms 367: learn: 0.0098447 total: 668ms remaining: 316ms 368: learn: 0.0098332 total: 670ms remaining: 314ms 369: learn: 0.0098277 total: 671ms remaining: 312ms 370: learn: 0.0097985 total: 673ms remaining: 310ms 371: learn: 0.0097515 total: 675ms remaining: 308ms 372: learn: 0.0097148 total: 677ms remaining: 307ms 373: learn: 0.0096722 total: 678ms remaining: 305ms 374: learn: 0.0096219 total: 680ms remaining: 303ms 375: learn: 0.0095664 total: 681ms remaining: 301ms 376: learn: 0.0095276 total: 683ms remaining: 299ms 377: learn: 0.0094742 total: 685ms remaining: 297ms 378: learn: 0.0094365 total: 687ms remaining: 295ms 379: learn: 0.0093930 total: 689ms remaining: 294ms 380: learn: 0.0093557 total: 690ms remaining: 292ms 381: learn: 0.0093055 total: 692ms remaining: 290ms 382: learn: 0.0092601 total: 694ms remaining: 288ms 383: learn: 0.0092208 total: 696ms remaining: 286ms 384: learn: 0.0091732 total: 698ms remaining: 285ms 385: learn: 0.0091266 total: 700ms remaining: 283ms 386: learn: 0.0090881 total: 701ms remaining: 281ms 387: learn: 0.0090554 total: 703ms remaining: 279ms 388: learn: 0.0090324 total: 705ms remaining: 277ms 389: learn: 0.0089939 total: 706ms remaining: 275ms 390: learn: 0.0089743 total: 708ms remaining: 273ms 391: learn: 0.0089477 total: 710ms remaining: 272ms 392: learn: 0.0089193 total: 712ms remaining: 270ms 393: learn: 0.0088810 total: 713ms remaining: 268ms 394: learn: 0.0088638 total: 715ms remaining: 266ms 395: learn: 0.0088431 total: 717ms remaining: 264ms 396: learn: 0.0088013 total: 719ms remaining: 263ms 397: learn: 0.0088003 total: 720ms remaining: 261ms 398: learn: 0.0087608 total: 722ms remaining: 259ms 399: learn: 0.0087331 total: 724ms remaining: 257ms 400: learn: 0.0086931 total: 726ms remaining: 255ms 401: learn: 0.0086565 total: 727ms remaining: 253ms 402: learn: 0.0086191 total: 729ms remaining: 251ms 403: learn: 0.0085883 total: 731ms remaining: 250ms 404: learn: 0.0085583 total: 732ms remaining: 248ms 405: learn: 0.0085240 total: 734ms remaining: 246ms 406: learn: 0.0084878 total: 736ms remaining: 244ms 407: learn: 0.0084352 total: 737ms remaining: 242ms 408: learn: 0.0083974 total: 739ms remaining: 240ms 409: learn: 0.0083974 total: 741ms remaining: 238ms 410: learn: 0.0083834 total: 743ms remaining: 237ms 411: learn: 0.0083506 total: 744ms remaining: 235ms 412: learn: 0.0083384 total: 746ms remaining: 233ms 413: learn: 0.0082884 total: 748ms remaining: 231ms 414: learn: 0.0082715 total: 750ms remaining: 230ms 415: learn: 0.0082424 total: 752ms remaining: 228ms 416: learn: 0.0082294 total: 754ms remaining: 226ms 417: learn: 0.0081992 total: 756ms remaining: 224ms 418: learn: 0.0081680 total: 758ms remaining: 223ms 419: learn: 0.0081447 total: 760ms remaining: 221ms 420: learn: 0.0081154 total: 762ms remaining: 219ms 421: learn: 0.0081153 total: 764ms remaining: 217ms 422: learn: 0.0080862 total: 765ms remaining: 215ms 423: learn: 0.0080471 total: 767ms remaining: 213ms 424: learn: 0.0080201 total: 768ms remaining: 212ms 425: learn: 0.0079925 total: 770ms remaining: 210ms 426: learn: 0.0079922 total: 772ms remaining: 208ms 427: learn: 0.0079678 total: 773ms remaining: 206ms 428: learn: 0.0079353 total: 775ms remaining: 204ms 429: learn: 0.0079076 total: 777ms remaining: 202ms 430: learn: 0.0079076 total: 779ms remaining: 201ms 431: learn: 0.0078852 total: 781ms remaining: 199ms 432: learn: 0.0078502 total: 782ms remaining: 197ms 433: learn: 0.0078211 total: 784ms remaining: 195ms 434: learn: 0.0077916 total: 786ms remaining: 193ms 435: learn: 0.0077678 total: 788ms remaining: 192ms 436: learn: 0.0077393 total: 790ms remaining: 190ms 437: learn: 0.0077259 total: 792ms remaining: 188ms 438: learn: 0.0077001 total: 794ms remaining: 186ms 439: learn: 0.0076748 total: 795ms remaining: 184ms 440: learn: 0.0076747 total: 797ms remaining: 183ms 441: learn: 0.0076426 total: 799ms remaining: 181ms 442: learn: 0.0076115 total: 800ms remaining: 179ms 443: learn: 0.0076001 total: 802ms remaining: 177ms 444: learn: 0.0075829 total: 804ms remaining: 175ms 445: learn: 0.0075558 total: 806ms remaining: 174ms 446: learn: 0.0075103 total: 808ms remaining: 172ms 447: learn: 0.0074811 total: 810ms remaining: 170ms 448: learn: 0.0074583 total: 812ms remaining: 168ms 449: learn: 0.0074487 total: 813ms remaining: 166ms 450: learn: 0.0074177 total: 815ms remaining: 164ms 451: learn: 0.0074043 total: 831ms remaining: 166ms 452: learn: 0.0073979 total: 833ms remaining: 164ms 453: learn: 0.0073789 total: 835ms remaining: 162ms 454: learn: 0.0073478 total: 837ms remaining: 160ms 455: learn: 0.0073412 total: 838ms remaining: 158ms 456: learn: 0.0073391 total: 846ms remaining: 157ms 457: learn: 0.0073207 total: 848ms remaining: 156ms 458: learn: 0.0072969 total: 850ms remaining: 154ms 459: learn: 0.0072846 total: 852ms remaining: 152ms 460: learn: 0.0072669 total: 854ms remaining: 150ms 461: learn: 0.0072393 total: 856ms remaining: 148ms 462: learn: 0.0072211 total: 857ms remaining: 146ms 463: learn: 0.0071998 total: 859ms remaining: 144ms 464: learn: 0.0071737 total: 861ms remaining: 143ms 465: learn: 0.0071531 total: 863ms remaining: 141ms 466: learn: 0.0071499 total: 865ms remaining: 139ms 467: learn: 0.0071209 total: 867ms remaining: 137ms 468: learn: 0.0070980 total: 868ms remaining: 135ms 469: learn: 0.0070960 total: 870ms remaining: 133ms 470: learn: 0.0070960 total: 872ms remaining: 131ms 471: learn: 0.0070935 total: 873ms remaining: 130ms 472: learn: 0.0070935 total: 875ms remaining: 128ms 473: learn: 0.0070900 total: 877ms remaining: 126ms 474: learn: 0.0070675 total: 878ms remaining: 124ms 475: learn: 0.0070558 total: 881ms remaining: 122ms 476: learn: 0.0070502 total: 882ms remaining: 120ms 477: learn: 0.0070244 total: 884ms remaining: 118ms 478: learn: 0.0070038 total: 886ms remaining: 117ms 479: learn: 0.0069921 total: 888ms remaining: 115ms 480: learn: 0.0069897 total: 889ms remaining: 113ms 481: learn: 0.0069787 total: 892ms remaining: 111ms 482: learn: 0.0069770 total: 893ms remaining: 109ms 483: learn: 0.0069760 total: 895ms remaining: 107ms 484: learn: 0.0069733 total: 897ms remaining: 105ms 485: learn: 0.0069714 total: 898ms remaining: 104ms 486: learn: 0.0069545 total: 901ms remaining: 102ms 487: learn: 0.0069299 total: 903ms remaining: 99.9ms 488: learn: 0.0069195 total: 920ms remaining: 99.7ms 489: learn: 0.0068961 total: 921ms remaining: 97.8ms 490: learn: 0.0068907 total: 923ms remaining: 95.9ms 491: learn: 0.0068897 total: 925ms remaining: 94ms 492: learn: 0.0068897 total: 926ms remaining: 92.1ms 493: learn: 0.0068872 total: 928ms remaining: 90.2ms 494: learn: 0.0068643 total: 930ms remaining: 88.3ms 495: learn: 0.0068525 total: 933ms remaining: 86.5ms 496: learn: 0.0068349 total: 935ms remaining: 84.6ms 497: learn: 0.0068315 total: 965ms remaining: 85.3ms 498: learn: 0.0068315 total: 967ms remaining: 83.3ms 499: learn: 0.0068307 total: 968ms remaining: 81.3ms 500: learn: 0.0068293 total: 970ms remaining: 79.4ms 501: learn: 0.0068282 total: 972ms remaining: 77.4ms 502: learn: 0.0068277 total: 974ms remaining: 75.5ms 503: learn: 0.0068264 total: 975ms remaining: 73.5ms 504: learn: 0.0068057 total: 977ms remaining: 71.6ms 505: learn: 0.0067951 total: 979ms remaining: 69.7ms 506: learn: 0.0067945 total: 981ms remaining: 67.7ms 507: learn: 0.0067932 total: 983ms remaining: 65.8ms 508: learn: 0.0067912 total: 985ms remaining: 63.8ms 509: learn: 0.0067898 total: 986ms remaining: 61.9ms 510: learn: 0.0067729 total: 988ms remaining: 59.9ms 511: learn: 0.0067637 total: 990ms remaining: 58ms 512: learn: 0.0067471 total: 991ms remaining: 56ms 513: learn: 0.0067349 total: 993ms remaining: 54.1ms 514: learn: 0.0067350 total: 995ms remaining: 52.1ms 515: learn: 0.0067350 total: 996ms remaining: 50.2ms 516: learn: 0.0067350 total: 998ms remaining: 48.2ms 517: learn: 0.0067350 total: 999ms remaining: 46.3ms 518: learn: 0.0067347 total: 1s remaining: 44.4ms 519: learn: 0.0067346 total: 1s remaining: 42.4ms 520: learn: 0.0067344 total: 1s remaining: 40.5ms 521: learn: 0.0067344 total: 1s remaining: 38.5ms 522: learn: 0.0067343 total: 1.01s remaining: 36.6ms 523: learn: 0.0067341 total: 1.01s remaining: 34.7ms 524: learn: 0.0067071 total: 1.01s remaining: 32.8ms 525: learn: 0.0067069 total: 1.01s remaining: 30.8ms 526: learn: 0.0067067 total: 1.01s remaining: 28.9ms 527: learn: 0.0067067 total: 1.02s remaining: 26.9ms 528: learn: 0.0067064 total: 1.02s remaining: 25ms 529: learn: 0.0067063 total: 1.02s remaining: 23.1ms 530: learn: 0.0067063 total: 1.02s remaining: 21.2ms 531: learn: 0.0067030 total: 1.02s remaining: 19.2ms 532: learn: 0.0066967 total: 1.02s remaining: 17.3ms 533: learn: 0.0066956 total: 1.03s remaining: 15.4ms 534: learn: 0.0066745 total: 1.03s remaining: 13.5ms 535: learn: 0.0066491 total: 1.03s remaining: 11.5ms 536: learn: 0.0066187 total: 1.03s remaining: 9.61ms 537: learn: 0.0066024 total: 1.03s remaining: 7.69ms 538: learn: 0.0066024 total: 1.03s remaining: 5.76ms 539: learn: 0.0066024 total: 1.04s remaining: 3.84ms 540: learn: 0.0065962 total: 1.04s remaining: 1.92ms 541: learn: 0.0065962 total: 1.04s remaining: 0us 0: learn: 0.5536936 total: 1.76ms remaining: 954ms 1: learn: 0.4620567 total: 3.45ms remaining: 932ms 2: learn: 0.3905196 total: 5.15ms remaining: 926ms 3: learn: 0.3521590 total: 6.84ms remaining: 921ms 4: learn: 0.3257945 total: 8.53ms remaining: 916ms 5: learn: 0.3003336 total: 10.3ms remaining: 923ms 6: learn: 0.2908666 total: 12.1ms remaining: 922ms 7: learn: 0.2787181 total: 14ms remaining: 937ms 8: learn: 0.2634185 total: 15.9ms remaining: 939ms 9: learn: 0.2518627 total: 17.6ms remaining: 935ms 10: learn: 0.2390562 total: 19.3ms remaining: 932ms 11: learn: 0.2241176 total: 21.1ms remaining: 932ms 12: learn: 0.2114273 total: 22.7ms remaining: 924ms 13: learn: 0.2013524 total: 24.2ms remaining: 914ms 14: learn: 0.1961105 total: 25.9ms remaining: 911ms 15: learn: 0.1902366 total: 27.6ms remaining: 907ms 16: learn: 0.1851023 total: 29.4ms remaining: 908ms 17: learn: 0.1796265 total: 31.1ms remaining: 905ms 18: learn: 0.1773016 total: 32.3ms remaining: 889ms 19: learn: 0.1715945 total: 33.9ms remaining: 884ms 20: learn: 0.1665289 total: 35.5ms remaining: 880ms 21: learn: 0.1593535 total: 37.1ms remaining: 878ms 22: learn: 0.1569057 total: 38.7ms remaining: 873ms 23: learn: 0.1547054 total: 40.5ms remaining: 875ms 24: learn: 0.1497222 total: 42.4ms remaining: 878ms 25: learn: 0.1435937 total: 44.2ms remaining: 877ms 26: learn: 0.1397433 total: 46.1ms remaining: 879ms 27: learn: 0.1365216 total: 47.7ms remaining: 876ms 28: learn: 0.1334582 total: 49.5ms remaining: 875ms 29: learn: 0.1305447 total: 50.9ms remaining: 869ms 30: learn: 0.1276142 total: 52.6ms remaining: 867ms 31: learn: 0.1242330 total: 54.1ms remaining: 863ms 32: learn: 0.1217131 total: 56.1ms remaining: 866ms 33: learn: 0.1180812 total: 57.8ms remaining: 864ms 34: learn: 0.1176416 total: 59.3ms remaining: 860ms 35: learn: 0.1156696 total: 61ms remaining: 858ms 36: learn: 0.1124585 total: 62.7ms remaining: 856ms 37: learn: 0.1085471 total: 64.5ms remaining: 856ms 38: learn: 0.1084698 total: 66.4ms remaining: 856ms 39: learn: 0.1072377 total: 68.5ms remaining: 860ms 40: learn: 0.1070357 total: 70.2ms remaining: 858ms 41: learn: 0.1069647 total: 72.3ms remaining: 860ms 42: learn: 0.1068508 total: 74.2ms remaining: 861ms 43: learn: 0.1068074 total: 75.7ms remaining: 856ms 44: learn: 0.1058743 total: 77.4ms remaining: 855ms 45: learn: 0.1057825 total: 79.2ms remaining: 854ms 46: learn: 0.1057334 total: 80.9ms remaining: 852ms 47: learn: 0.1056556 total: 82.5ms remaining: 850ms 48: learn: 0.1056012 total: 84.4ms remaining: 849ms 49: learn: 0.1021514 total: 86.1ms remaining: 847ms 50: learn: 0.0997216 total: 88ms remaining: 847ms 51: learn: 0.0960335 total: 89.7ms remaining: 846ms 52: learn: 0.0928383 total: 91.4ms remaining: 843ms 53: learn: 0.0899084 total: 93ms remaining: 840ms 54: learn: 0.0889642 total: 94.6ms remaining: 838ms 55: learn: 0.0862328 total: 96.2ms remaining: 835ms 56: learn: 0.0850831 total: 97.7ms remaining: 832ms 57: learn: 0.0826645 total: 99.6ms remaining: 831ms 58: learn: 0.0808408 total: 101ms remaining: 830ms 59: learn: 0.0786201 total: 104ms remaining: 832ms 60: learn: 0.0775009 total: 105ms remaining: 831ms 61: learn: 0.0759897 total: 107ms remaining: 830ms 62: learn: 0.0740498 total: 109ms remaining: 828ms 63: learn: 0.0740234 total: 111ms remaining: 826ms 64: learn: 0.0726077 total: 112ms remaining: 825ms 65: learn: 0.0711154 total: 114ms remaining: 825ms 66: learn: 0.0705400 total: 116ms remaining: 823ms 67: learn: 0.0685958 total: 118ms remaining: 820ms 68: learn: 0.0681650 total: 119ms remaining: 819ms 69: learn: 0.0669126 total: 121ms remaining: 816ms 70: learn: 0.0653685 total: 123ms remaining: 814ms 71: learn: 0.0650911 total: 124ms remaining: 811ms 72: learn: 0.0647249 total: 126ms remaining: 808ms 73: learn: 0.0631346 total: 127ms remaining: 806ms 74: learn: 0.0624372 total: 129ms remaining: 805ms 75: learn: 0.0607782 total: 131ms remaining: 806ms 76: learn: 0.0602196 total: 134ms remaining: 807ms 77: learn: 0.0592060 total: 135ms remaining: 805ms 78: learn: 0.0582031 total: 137ms remaining: 803ms 79: learn: 0.0570871 total: 139ms remaining: 801ms 80: learn: 0.0564353 total: 140ms remaining: 799ms 81: learn: 0.0551622 total: 142ms remaining: 798ms 82: learn: 0.0550137 total: 144ms remaining: 797ms 83: learn: 0.0539792 total: 146ms remaining: 795ms 84: learn: 0.0539671 total: 147ms remaining: 792ms 85: learn: 0.0536070 total: 149ms remaining: 790ms 86: learn: 0.0524137 total: 151ms remaining: 789ms 87: learn: 0.0522022 total: 152ms remaining: 786ms 88: learn: 0.0512385 total: 154ms remaining: 784ms 89: learn: 0.0512276 total: 156ms remaining: 782ms 90: learn: 0.0512167 total: 158ms remaining: 781ms 91: learn: 0.0512064 total: 159ms remaining: 779ms 92: learn: 0.0511961 total: 161ms remaining: 779ms 93: learn: 0.0511863 total: 163ms remaining: 778ms 94: learn: 0.0511769 total: 165ms remaining: 777ms 95: learn: 0.0511675 total: 167ms remaining: 775ms 96: learn: 0.0511464 total: 169ms remaining: 775ms 97: learn: 0.0511375 total: 171ms remaining: 774ms 98: learn: 0.0502986 total: 173ms remaining: 773ms 99: learn: 0.0496512 total: 174ms remaining: 771ms 100: learn: 0.0487529 total: 176ms remaining: 769ms 101: learn: 0.0487443 total: 178ms remaining: 767ms 102: learn: 0.0479793 total: 179ms remaining: 764ms 103: learn: 0.0471697 total: 181ms remaining: 762ms 104: learn: 0.0467649 total: 182ms remaining: 759ms 105: learn: 0.0462629 total: 184ms remaining: 758ms 106: learn: 0.0455780 total: 186ms remaining: 755ms 107: learn: 0.0451195 total: 188ms remaining: 754ms 108: learn: 0.0443222 total: 190ms remaining: 753ms 109: learn: 0.0437746 total: 192ms remaining: 753ms 110: learn: 0.0434028 total: 194ms remaining: 753ms 111: learn: 0.0429844 total: 197ms remaining: 754ms 112: learn: 0.0421089 total: 200ms remaining: 758ms 113: learn: 0.0416949 total: 202ms remaining: 759ms 114: learn: 0.0415371 total: 231ms remaining: 857ms 115: learn: 0.0406400 total: 234ms remaining: 858ms 116: learn: 0.0394225 total: 237ms remaining: 860ms 117: learn: 0.0392659 total: 240ms remaining: 861ms 118: learn: 0.0382408 total: 242ms remaining: 862ms 119: learn: 0.0380497 total: 245ms remaining: 862ms 120: learn: 0.0374845 total: 248ms remaining: 861ms 121: learn: 0.0370009 total: 250ms remaining: 860ms 122: learn: 0.0364413 total: 252ms remaining: 858ms 123: learn: 0.0358683 total: 254ms remaining: 857ms 124: learn: 0.0350320 total: 257ms remaining: 856ms 125: learn: 0.0350247 total: 259ms remaining: 854ms 126: learn: 0.0343565 total: 261ms remaining: 852ms 127: learn: 0.0343058 total: 263ms remaining: 849ms 128: learn: 0.0335507 total: 265ms remaining: 848ms 129: learn: 0.0335438 total: 267ms remaining: 847ms 130: learn: 0.0331705 total: 269ms remaining: 845ms 131: learn: 0.0331185 total: 271ms remaining: 843ms 132: learn: 0.0325609 total: 273ms remaining: 840ms 133: learn: 0.0325048 total: 275ms remaining: 837ms 134: learn: 0.0324995 total: 277ms remaining: 834ms 135: learn: 0.0324949 total: 279ms remaining: 832ms 136: learn: 0.0320643 total: 281ms remaining: 830ms 137: learn: 0.0317094 total: 283ms remaining: 828ms 138: learn: 0.0312822 total: 285ms remaining: 825ms 139: learn: 0.0308396 total: 286ms remaining: 823ms 140: learn: 0.0302161 total: 288ms remaining: 820ms 141: learn: 0.0301799 total: 290ms remaining: 817ms 142: learn: 0.0298762 total: 292ms remaining: 814ms 143: learn: 0.0293605 total: 293ms remaining: 811ms 144: learn: 0.0292258 total: 295ms remaining: 808ms 145: learn: 0.0287914 total: 297ms remaining: 805ms 146: learn: 0.0284045 total: 298ms remaining: 802ms 147: learn: 0.0279386 total: 300ms remaining: 800ms 148: learn: 0.0276206 total: 302ms remaining: 798ms 149: learn: 0.0272494 total: 304ms remaining: 795ms 150: learn: 0.0272442 total: 306ms remaining: 792ms 151: learn: 0.0272362 total: 308ms remaining: 789ms 152: learn: 0.0268076 total: 309ms remaining: 786ms 153: learn: 0.0264569 total: 311ms remaining: 784ms 154: learn: 0.0264536 total: 313ms remaining: 780ms 155: learn: 0.0261310 total: 315ms remaining: 778ms 156: learn: 0.0258491 total: 316ms remaining: 775ms 157: learn: 0.0258266 total: 318ms remaining: 772ms 158: learn: 0.0255545 total: 320ms remaining: 770ms 159: learn: 0.0252513 total: 322ms remaining: 768ms 160: learn: 0.0250485 total: 323ms remaining: 765ms 161: learn: 0.0247788 total: 325ms remaining: 763ms 162: learn: 0.0245504 total: 327ms remaining: 761ms 163: learn: 0.0244849 total: 329ms remaining: 759ms 164: learn: 0.0241818 total: 331ms remaining: 757ms 165: learn: 0.0240863 total: 333ms remaining: 755ms 166: learn: 0.0240694 total: 335ms remaining: 753ms 167: learn: 0.0238572 total: 338ms remaining: 752ms 168: learn: 0.0236944 total: 360ms remaining: 795ms 169: learn: 0.0235214 total: 362ms remaining: 792ms 170: learn: 0.0232941 total: 364ms remaining: 789ms 171: learn: 0.0232909 total: 366ms remaining: 787ms 172: learn: 0.0232887 total: 367ms remaining: 784ms 173: learn: 0.0232851 total: 369ms remaining: 781ms 174: learn: 0.0232815 total: 371ms remaining: 778ms 175: learn: 0.0232794 total: 373ms remaining: 776ms 176: learn: 0.0232770 total: 375ms remaining: 774ms 177: learn: 0.0230460 total: 377ms remaining: 772ms 178: learn: 0.0228226 total: 379ms remaining: 769ms 179: learn: 0.0226012 total: 381ms remaining: 767ms 180: learn: 0.0223245 total: 383ms remaining: 764ms 181: learn: 0.0223224 total: 385ms remaining: 761ms 182: learn: 0.0219812 total: 387ms remaining: 759ms 183: learn: 0.0217144 total: 388ms remaining: 756ms 184: learn: 0.0214536 total: 391ms remaining: 754ms 185: learn: 0.0212463 total: 393ms remaining: 751ms 186: learn: 0.0208700 total: 395ms remaining: 749ms 187: learn: 0.0205360 total: 396ms remaining: 747ms 188: learn: 0.0205358 total: 398ms remaining: 744ms 189: learn: 0.0202556 total: 400ms remaining: 741ms 190: learn: 0.0201039 total: 402ms remaining: 738ms 191: learn: 0.0199553 total: 404ms remaining: 736ms 192: learn: 0.0198702 total: 406ms remaining: 734ms 193: learn: 0.0198187 total: 407ms remaining: 731ms 194: learn: 0.0195051 total: 409ms remaining: 729ms 195: learn: 0.0194078 total: 411ms remaining: 726ms 196: learn: 0.0192400 total: 413ms remaining: 723ms 197: learn: 0.0190918 total: 415ms remaining: 721ms 198: learn: 0.0190353 total: 418ms remaining: 720ms 199: learn: 0.0188957 total: 420ms remaining: 718ms 200: learn: 0.0188124 total: 422ms remaining: 716ms 201: learn: 0.0186659 total: 424ms remaining: 713ms 202: learn: 0.0185477 total: 426ms remaining: 711ms 203: learn: 0.0183881 total: 428ms remaining: 708ms 204: learn: 0.0182658 total: 429ms remaining: 706ms 205: learn: 0.0181017 total: 431ms remaining: 703ms 206: learn: 0.0180130 total: 433ms remaining: 700ms 207: learn: 0.0179367 total: 434ms remaining: 697ms 208: learn: 0.0178625 total: 436ms remaining: 695ms 209: learn: 0.0177211 total: 438ms remaining: 692ms 210: learn: 0.0175674 total: 440ms remaining: 690ms 211: learn: 0.0173700 total: 441ms remaining: 687ms 212: learn: 0.0173284 total: 443ms remaining: 684ms 213: learn: 0.0171985 total: 445ms remaining: 682ms 214: learn: 0.0171529 total: 447ms remaining: 680ms 215: learn: 0.0168903 total: 449ms remaining: 677ms 216: learn: 0.0168054 total: 451ms remaining: 675ms 217: learn: 0.0166372 total: 453ms remaining: 673ms 218: learn: 0.0164857 total: 454ms remaining: 670ms 219: learn: 0.0163844 total: 460ms remaining: 674ms 220: learn: 0.0162182 total: 462ms remaining: 671ms 221: learn: 0.0161629 total: 464ms remaining: 669ms 222: learn: 0.0161181 total: 466ms remaining: 667ms 223: learn: 0.0160531 total: 468ms remaining: 664ms 224: learn: 0.0159789 total: 470ms remaining: 662ms 225: learn: 0.0158903 total: 472ms remaining: 660ms 226: learn: 0.0157264 total: 474ms remaining: 657ms 227: learn: 0.0157251 total: 475ms remaining: 655ms 228: learn: 0.0157245 total: 477ms remaining: 652ms 229: learn: 0.0157237 total: 479ms remaining: 650ms 230: learn: 0.0157231 total: 481ms remaining: 647ms 231: learn: 0.0157227 total: 482ms remaining: 644ms 232: learn: 0.0157223 total: 484ms remaining: 642ms 233: learn: 0.0157216 total: 487ms remaining: 641ms 234: learn: 0.0157212 total: 506ms remaining: 661ms 235: learn: 0.0157205 total: 509ms remaining: 659ms 236: learn: 0.0157203 total: 511ms remaining: 658ms 237: learn: 0.0157200 total: 514ms remaining: 656ms 238: learn: 0.0157198 total: 516ms remaining: 655ms 239: learn: 0.0157191 total: 519ms remaining: 653ms 240: learn: 0.0157188 total: 522ms remaining: 651ms 241: learn: 0.0157184 total: 523ms remaining: 649ms 242: learn: 0.0157175 total: 526ms remaining: 647ms 243: learn: 0.0157166 total: 527ms remaining: 644ms 244: learn: 0.0157162 total: 529ms remaining: 641ms 245: learn: 0.0157159 total: 531ms remaining: 639ms 246: learn: 0.0157152 total: 533ms remaining: 637ms 247: learn: 0.0157150 total: 535ms remaining: 635ms 248: learn: 0.0157149 total: 537ms remaining: 632ms 249: learn: 0.0157148 total: 539ms remaining: 630ms 250: learn: 0.0157146 total: 542ms remaining: 628ms 251: learn: 0.0157145 total: 544ms remaining: 626ms 252: learn: 0.0157142 total: 546ms remaining: 623ms 253: learn: 0.0157137 total: 548ms remaining: 622ms 254: learn: 0.0157135 total: 551ms remaining: 620ms 255: learn: 0.0157132 total: 556ms remaining: 621ms 256: learn: 0.0157130 total: 559ms remaining: 620ms 257: learn: 0.0157128 total: 562ms remaining: 618ms 258: learn: 0.0157127 total: 564ms remaining: 617ms 259: learn: 0.0157126 total: 567ms remaining: 615ms 260: learn: 0.0157125 total: 569ms remaining: 613ms 261: learn: 0.0157123 total: 572ms remaining: 611ms 262: learn: 0.0157116 total: 575ms remaining: 610ms 263: learn: 0.0157106 total: 578ms remaining: 608ms 264: learn: 0.0157095 total: 582ms remaining: 608ms 265: learn: 0.0157092 total: 584ms remaining: 606ms 266: learn: 0.0157087 total: 586ms remaining: 604ms 267: learn: 0.0157084 total: 605ms remaining: 618ms 268: learn: 0.0157078 total: 607ms remaining: 616ms 269: learn: 0.0157075 total: 609ms remaining: 614ms 270: learn: 0.0157074 total: 611ms remaining: 611ms 271: learn: 0.0157069 total: 613ms remaining: 609ms 272: learn: 0.0157069 total: 615ms remaining: 606ms 273: learn: 0.0157068 total: 617ms remaining: 604ms 274: learn: 0.0157068 total: 619ms remaining: 601ms 275: learn: 0.0157066 total: 621ms remaining: 599ms 276: learn: 0.0157064 total: 623ms remaining: 596ms 277: learn: 0.0157060 total: 625ms remaining: 593ms 278: learn: 0.0157057 total: 626ms remaining: 590ms 279: learn: 0.0157054 total: 629ms remaining: 588ms 280: learn: 0.0157052 total: 631ms remaining: 586ms 281: learn: 0.0157051 total: 633ms remaining: 583ms 282: learn: 0.0157050 total: 634ms remaining: 581ms 283: learn: 0.0157048 total: 636ms remaining: 578ms 284: learn: 0.0157047 total: 639ms remaining: 576ms 285: learn: 0.0157046 total: 640ms remaining: 573ms 286: learn: 0.0157046 total: 642ms remaining: 571ms 287: learn: 0.0157046 total: 644ms remaining: 568ms 288: learn: 0.0157046 total: 647ms remaining: 566ms 289: learn: 0.0157046 total: 648ms remaining: 564ms 290: learn: 0.0157046 total: 650ms remaining: 561ms 291: learn: 0.0157046 total: 651ms remaining: 558ms 292: learn: 0.0157046 total: 653ms remaining: 555ms 293: learn: 0.0157046 total: 655ms remaining: 553ms 294: learn: 0.0157046 total: 658ms remaining: 551ms 295: learn: 0.0157046 total: 660ms remaining: 548ms 296: learn: 0.0157046 total: 662ms remaining: 546ms 297: learn: 0.0157046 total: 664ms remaining: 543ms 298: learn: 0.0157046 total: 666ms remaining: 541ms 299: learn: 0.0157046 total: 668ms remaining: 539ms 300: learn: 0.0157046 total: 670ms remaining: 536ms 301: learn: 0.0157046 total: 672ms remaining: 534ms 302: learn: 0.0157046 total: 674ms remaining: 532ms 303: learn: 0.0157046 total: 676ms remaining: 530ms 304: learn: 0.0157046 total: 678ms remaining: 527ms 305: learn: 0.0157046 total: 680ms remaining: 524ms 306: learn: 0.0157046 total: 682ms remaining: 522ms 307: learn: 0.0157046 total: 684ms remaining: 519ms 308: learn: 0.0157046 total: 686ms remaining: 517ms 309: learn: 0.0157046 total: 687ms remaining: 514ms 310: learn: 0.0157046 total: 689ms remaining: 512ms 311: learn: 0.0157046 total: 691ms remaining: 509ms 312: learn: 0.0157046 total: 693ms remaining: 507ms 313: learn: 0.0157046 total: 695ms remaining: 505ms 314: learn: 0.0157046 total: 698ms remaining: 503ms 315: learn: 0.0157046 total: 699ms remaining: 500ms 316: learn: 0.0157046 total: 702ms remaining: 498ms 317: learn: 0.0157046 total: 704ms remaining: 496ms 318: learn: 0.0157046 total: 706ms remaining: 493ms 319: learn: 0.0157046 total: 707ms remaining: 491ms 320: learn: 0.0157046 total: 709ms remaining: 488ms 321: learn: 0.0157046 total: 715ms remaining: 489ms 322: learn: 0.0157046 total: 717ms remaining: 486ms 323: learn: 0.0157046 total: 719ms remaining: 484ms 324: learn: 0.0157046 total: 721ms remaining: 481ms 325: learn: 0.0157046 total: 722ms remaining: 478ms 326: learn: 0.0157046 total: 723ms remaining: 476ms 327: learn: 0.0157046 total: 725ms remaining: 473ms 328: learn: 0.0157046 total: 726ms remaining: 470ms 329: learn: 0.0157046 total: 728ms remaining: 468ms 330: learn: 0.0157046 total: 730ms remaining: 466ms 331: learn: 0.0157046 total: 732ms remaining: 463ms 332: learn: 0.0157046 total: 734ms remaining: 461ms 333: learn: 0.0157046 total: 736ms remaining: 458ms 334: learn: 0.0157046 total: 738ms remaining: 456ms 335: learn: 0.0157046 total: 740ms remaining: 454ms 336: learn: 0.0157046 total: 742ms remaining: 451ms 337: learn: 0.0157046 total: 744ms remaining: 449ms 338: learn: 0.0157046 total: 746ms remaining: 446ms 339: learn: 0.0157046 total: 747ms remaining: 444ms 340: learn: 0.0157046 total: 749ms remaining: 442ms 341: learn: 0.0157046 total: 751ms remaining: 439ms 342: learn: 0.0157046 total: 753ms remaining: 437ms 343: learn: 0.0157046 total: 754ms remaining: 434ms 344: learn: 0.0157046 total: 756ms remaining: 432ms 345: learn: 0.0157046 total: 758ms remaining: 429ms 346: learn: 0.0157046 total: 760ms remaining: 427ms 347: learn: 0.0157046 total: 762ms remaining: 425ms 348: learn: 0.0157046 total: 763ms remaining: 422ms 349: learn: 0.0157046 total: 765ms remaining: 420ms 350: learn: 0.0157046 total: 767ms remaining: 417ms 351: learn: 0.0157046 total: 769ms remaining: 415ms 352: learn: 0.0157046 total: 770ms remaining: 412ms 353: learn: 0.0157046 total: 772ms remaining: 410ms 354: learn: 0.0157046 total: 773ms remaining: 407ms 355: learn: 0.0157046 total: 775ms remaining: 405ms 356: learn: 0.0157046 total: 777ms remaining: 402ms 357: learn: 0.0157046 total: 778ms remaining: 400ms 358: learn: 0.0157046 total: 780ms remaining: 398ms 359: learn: 0.0157046 total: 782ms remaining: 395ms 360: learn: 0.0157046 total: 783ms remaining: 393ms 361: learn: 0.0157046 total: 786ms remaining: 391ms 362: learn: 0.0157046 total: 788ms remaining: 389ms 363: learn: 0.0157046 total: 790ms remaining: 386ms 364: learn: 0.0157046 total: 792ms remaining: 384ms 365: learn: 0.0157046 total: 794ms remaining: 382ms 366: learn: 0.0157046 total: 796ms remaining: 380ms 367: learn: 0.0157046 total: 798ms remaining: 377ms 368: learn: 0.0157046 total: 800ms remaining: 375ms 369: learn: 0.0157046 total: 802ms remaining: 373ms 370: learn: 0.0157046 total: 804ms remaining: 370ms 371: learn: 0.0157046 total: 805ms remaining: 368ms 372: learn: 0.0157046 total: 807ms remaining: 366ms 373: learn: 0.0157046 total: 809ms remaining: 363ms 374: learn: 0.0157046 total: 811ms remaining: 361ms 375: learn: 0.0157046 total: 813ms remaining: 359ms 376: learn: 0.0157046 total: 815ms remaining: 357ms 377: learn: 0.0157046 total: 816ms remaining: 354ms 378: learn: 0.0157046 total: 819ms remaining: 352ms 379: learn: 0.0157046 total: 821ms remaining: 350ms 380: learn: 0.0157046 total: 823ms remaining: 348ms 381: learn: 0.0157046 total: 825ms remaining: 345ms 382: learn: 0.0157046 total: 827ms remaining: 343ms 383: learn: 0.0157046 total: 828ms remaining: 341ms 384: learn: 0.0157046 total: 830ms remaining: 338ms 385: learn: 0.0157046 total: 832ms remaining: 336ms 386: learn: 0.0157046 total: 834ms remaining: 334ms 387: learn: 0.0157046 total: 835ms remaining: 332ms 388: learn: 0.0157046 total: 837ms remaining: 329ms 389: learn: 0.0157046 total: 839ms remaining: 327ms 390: learn: 0.0157046 total: 840ms remaining: 324ms 391: learn: 0.0157046 total: 842ms remaining: 322ms 392: learn: 0.0157046 total: 844ms remaining: 320ms 393: learn: 0.0157046 total: 846ms remaining: 318ms 394: learn: 0.0157046 total: 847ms remaining: 315ms 395: learn: 0.0157046 total: 849ms remaining: 313ms 396: learn: 0.0157046 total: 851ms remaining: 311ms 397: learn: 0.0157046 total: 853ms remaining: 309ms 398: learn: 0.0157046 total: 855ms remaining: 306ms 399: learn: 0.0157046 total: 857ms remaining: 304ms 400: learn: 0.0157046 total: 859ms remaining: 302ms 401: learn: 0.0157046 total: 861ms remaining: 300ms 402: learn: 0.0157046 total: 862ms remaining: 297ms 403: learn: 0.0157046 total: 864ms remaining: 295ms 404: learn: 0.0157046 total: 871ms remaining: 295ms 405: learn: 0.0157046 total: 873ms remaining: 293ms 406: learn: 0.0157046 total: 875ms remaining: 290ms 407: learn: 0.0157046 total: 878ms remaining: 288ms 408: learn: 0.0157046 total: 880ms remaining: 286ms 409: learn: 0.0157046 total: 881ms remaining: 284ms 410: learn: 0.0157046 total: 883ms remaining: 281ms 411: learn: 0.0157046 total: 885ms remaining: 279ms 412: learn: 0.0157046 total: 887ms remaining: 277ms 413: learn: 0.0157046 total: 889ms remaining: 275ms 414: learn: 0.0157046 total: 890ms remaining: 272ms 415: learn: 0.0157046 total: 892ms remaining: 270ms 416: learn: 0.0157046 total: 893ms remaining: 268ms 417: learn: 0.0157046 total: 895ms remaining: 265ms 418: learn: 0.0157046 total: 897ms remaining: 263ms 419: learn: 0.0157046 total: 898ms remaining: 261ms 420: learn: 0.0157046 total: 900ms remaining: 259ms 421: learn: 0.0157046 total: 901ms remaining: 256ms 422: learn: 0.0157046 total: 903ms remaining: 254ms 423: learn: 0.0157046 total: 905ms remaining: 252ms 424: learn: 0.0157046 total: 907ms remaining: 250ms 425: learn: 0.0157046 total: 909ms remaining: 247ms 426: learn: 0.0157046 total: 911ms remaining: 245ms 427: learn: 0.0157046 total: 913ms remaining: 243ms 428: learn: 0.0157046 total: 915ms remaining: 241ms 429: learn: 0.0157046 total: 917ms remaining: 239ms 430: learn: 0.0157046 total: 919ms remaining: 237ms 431: learn: 0.0157046 total: 921ms remaining: 234ms 432: learn: 0.0157046 total: 923ms remaining: 232ms 433: learn: 0.0157046 total: 956ms remaining: 238ms 434: learn: 0.0157046 total: 957ms remaining: 236ms 435: learn: 0.0157046 total: 959ms remaining: 233ms 436: learn: 0.0157046 total: 961ms remaining: 231ms 437: learn: 0.0157046 total: 963ms remaining: 229ms 438: learn: 0.0157046 total: 965ms remaining: 226ms 439: learn: 0.0157046 total: 966ms remaining: 224ms 440: learn: 0.0157046 total: 968ms remaining: 222ms 441: learn: 0.0157046 total: 970ms remaining: 219ms 442: learn: 0.0157046 total: 985ms remaining: 220ms 443: learn: 0.0157046 total: 987ms remaining: 218ms 444: learn: 0.0157046 total: 988ms remaining: 215ms 445: learn: 0.0157046 total: 990ms remaining: 213ms 446: learn: 0.0157046 total: 991ms remaining: 211ms 447: learn: 0.0157046 total: 993ms remaining: 208ms 448: learn: 0.0157046 total: 994ms remaining: 206ms 449: learn: 0.0157046 total: 996ms remaining: 204ms 450: learn: 0.0157046 total: 997ms remaining: 201ms 451: learn: 0.0157046 total: 999ms remaining: 199ms 452: learn: 0.0157046 total: 1s remaining: 197ms 453: learn: 0.0157046 total: 1s remaining: 194ms 454: learn: 0.0157046 total: 1s remaining: 192ms 455: learn: 0.0157046 total: 1.01s remaining: 190ms 456: learn: 0.0157046 total: 1.01s remaining: 188ms 457: learn: 0.0157046 total: 1.01s remaining: 185ms 458: learn: 0.0157046 total: 1.01s remaining: 183ms 459: learn: 0.0157046 total: 1.01s remaining: 181ms 460: learn: 0.0157046 total: 1.02s remaining: 179ms 461: learn: 0.0157046 total: 1.02s remaining: 176ms 462: learn: 0.0157046 total: 1.02s remaining: 174ms 463: learn: 0.0157046 total: 1.02s remaining: 172ms 464: learn: 0.0157046 total: 1.02s remaining: 170ms 465: learn: 0.0157046 total: 1.02s remaining: 167ms 466: learn: 0.0157046 total: 1.03s remaining: 165ms 467: learn: 0.0157046 total: 1.03s remaining: 163ms 468: learn: 0.0157046 total: 1.03s remaining: 161ms 469: learn: 0.0157046 total: 1.03s remaining: 159ms 470: learn: 0.0157046 total: 1.04s remaining: 156ms 471: learn: 0.0157046 total: 1.04s remaining: 154ms 472: learn: 0.0157046 total: 1.04s remaining: 152ms 473: learn: 0.0157046 total: 1.04s remaining: 150ms 474: learn: 0.0157046 total: 1.05s remaining: 148ms 475: learn: 0.0157046 total: 1.05s remaining: 145ms 476: learn: 0.0157046 total: 1.05s remaining: 143ms 477: learn: 0.0157046 total: 1.05s remaining: 141ms 478: learn: 0.0157046 total: 1.05s remaining: 139ms 479: learn: 0.0157046 total: 1.05s remaining: 136ms 480: learn: 0.0157046 total: 1.06s remaining: 134ms 481: learn: 0.0157046 total: 1.06s remaining: 132ms 482: learn: 0.0157046 total: 1.06s remaining: 129ms 483: learn: 0.0157046 total: 1.06s remaining: 127ms 484: learn: 0.0157046 total: 1.06s remaining: 125ms 485: learn: 0.0157046 total: 1.06s remaining: 123ms 486: learn: 0.0157046 total: 1.07s remaining: 121ms 487: learn: 0.0157046 total: 1.07s remaining: 118ms 488: learn: 0.0157046 total: 1.07s remaining: 116ms 489: learn: 0.0157046 total: 1.07s remaining: 114ms 490: learn: 0.0157046 total: 1.08s remaining: 113ms 491: learn: 0.0157046 total: 1.09s remaining: 111ms 492: learn: 0.0157046 total: 1.09s remaining: 108ms 493: learn: 0.0157046 total: 1.09s remaining: 106ms 494: learn: 0.0157046 total: 1.09s remaining: 104ms 495: learn: 0.0157046 total: 1.09s remaining: 102ms 496: learn: 0.0157046 total: 1.1s remaining: 99.3ms 497: learn: 0.0157046 total: 1.1s remaining: 97ms 498: learn: 0.0157046 total: 1.1s remaining: 94.9ms 499: learn: 0.0157046 total: 1.1s remaining: 92.8ms 500: learn: 0.0157046 total: 1.11s remaining: 90.5ms 501: learn: 0.0157046 total: 1.11s remaining: 88.3ms 502: learn: 0.0157046 total: 1.11s remaining: 86.1ms 503: learn: 0.0157046 total: 1.11s remaining: 83.9ms 504: learn: 0.0157046 total: 1.11s remaining: 81.6ms 505: learn: 0.0157046 total: 1.12s remaining: 79.4ms 506: learn: 0.0157046 total: 1.12s remaining: 77.2ms 507: learn: 0.0157046 total: 1.12s remaining: 75ms 508: learn: 0.0157046 total: 1.12s remaining: 72.8ms 509: learn: 0.0157046 total: 1.12s remaining: 70.5ms 510: learn: 0.0157046 total: 1.13s remaining: 68.3ms 511: learn: 0.0157046 total: 1.13s remaining: 66.1ms 512: learn: 0.0157046 total: 1.13s remaining: 63.8ms 513: learn: 0.0157046 total: 1.13s remaining: 61.6ms 514: learn: 0.0157046 total: 1.13s remaining: 59.4ms 515: learn: 0.0157046 total: 1.14s remaining: 57.2ms 516: learn: 0.0157046 total: 1.14s remaining: 55ms 517: learn: 0.0157046 total: 1.14s remaining: 52.8ms 518: learn: 0.0157046 total: 1.14s remaining: 50.5ms 519: learn: 0.0157046 total: 1.14s remaining: 48.4ms 520: learn: 0.0157046 total: 1.14s remaining: 46.1ms 521: learn: 0.0157046 total: 1.15s remaining: 43.9ms 522: learn: 0.0157046 total: 1.15s remaining: 41.7ms 523: learn: 0.0157046 total: 1.15s remaining: 39.5ms 524: learn: 0.0157046 total: 1.15s remaining: 37.3ms 525: learn: 0.0157046 total: 1.15s remaining: 35.1ms 526: learn: 0.0157046 total: 1.15s remaining: 32.9ms 527: learn: 0.0157046 total: 1.16s remaining: 30.7ms 528: learn: 0.0157046 total: 1.16s remaining: 28.5ms 529: learn: 0.0157046 total: 1.16s remaining: 26.3ms 530: learn: 0.0157046 total: 1.16s remaining: 24.1ms 531: learn: 0.0157046 total: 1.16s remaining: 21.9ms 532: learn: 0.0157046 total: 1.17s remaining: 19.7ms 533: learn: 0.0157046 total: 1.17s remaining: 17.5ms 534: learn: 0.0157046 total: 1.17s remaining: 15.3ms 535: learn: 0.0157046 total: 1.17s remaining: 13.1ms 536: learn: 0.0157046 total: 1.17s remaining: 10.9ms 537: learn: 0.0157046 total: 1.18s remaining: 8.74ms 538: learn: 0.0157046 total: 1.18s remaining: 6.56ms 539: learn: 0.0157046 total: 1.18s remaining: 4.37ms 540: learn: 0.0157046 total: 1.18s remaining: 2.18ms 541: learn: 0.0157046 total: 1.18s remaining: 0us 0: learn: 0.5621143 total: 2.07ms remaining: 1.12s 1: learn: 0.4981075 total: 3.56ms remaining: 961ms 2: learn: 0.4282670 total: 5.54ms remaining: 996ms 3: learn: 0.3770602 total: 8.09ms remaining: 1.09s 4: learn: 0.3427705 total: 10.5ms remaining: 1.13s 5: learn: 0.3158524 total: 12.5ms remaining: 1.12s 6: learn: 0.2870017 total: 14.5ms remaining: 1.11s 7: learn: 0.2691152 total: 17ms remaining: 1.14s 8: learn: 0.2564961 total: 19.2ms remaining: 1.14s 9: learn: 0.2457100 total: 21.2ms remaining: 1.13s 10: learn: 0.2340946 total: 23.1ms remaining: 1.11s 11: learn: 0.2273257 total: 25ms remaining: 1.1s 12: learn: 0.2204288 total: 27ms remaining: 1.1s 13: learn: 0.2136898 total: 29ms remaining: 1.09s 14: learn: 0.2050832 total: 31.2ms remaining: 1.09s 15: learn: 0.2009478 total: 32.9ms remaining: 1.08s 16: learn: 0.1967919 total: 34.9ms remaining: 1.08s 17: learn: 0.1932556 total: 36.5ms remaining: 1.06s 18: learn: 0.1871331 total: 38.4ms remaining: 1.06s 19: learn: 0.1817946 total: 40.2ms remaining: 1.05s 20: learn: 0.1758295 total: 42.2ms remaining: 1.04s 21: learn: 0.1733212 total: 44.2ms remaining: 1.04s 22: learn: 0.1698075 total: 46.5ms remaining: 1.05s 23: learn: 0.1653391 total: 48.2ms remaining: 1.04s 24: learn: 0.1617307 total: 50.6ms remaining: 1.05s 25: learn: 0.1579605 total: 52.6ms remaining: 1.04s 26: learn: 0.1544299 total: 55.1ms remaining: 1.05s 27: learn: 0.1500449 total: 56.9ms remaining: 1.04s 28: learn: 0.1479317 total: 58.7ms remaining: 1.04s 29: learn: 0.1409573 total: 60.3ms remaining: 1.03s 30: learn: 0.1375425 total: 62ms remaining: 1.02s 31: learn: 0.1342816 total: 63.8ms remaining: 1.02s 32: learn: 0.1315933 total: 65.8ms remaining: 1.01s 33: learn: 0.1285401 total: 67.5ms remaining: 1.01s 34: learn: 0.1251935 total: 69.4ms remaining: 1s 35: learn: 0.1218897 total: 71.6ms remaining: 1.01s 36: learn: 0.1197664 total: 73.9ms remaining: 1.01s 37: learn: 0.1192352 total: 75.8ms remaining: 1s 38: learn: 0.1185954 total: 77.9ms remaining: 1s 39: learn: 0.1138217 total: 79.8ms remaining: 1s 40: learn: 0.1116384 total: 82ms remaining: 1s 41: learn: 0.1107855 total: 84ms remaining: 1s 42: learn: 0.1077965 total: 86.4ms remaining: 1s 43: learn: 0.1058502 total: 88.2ms remaining: 998ms 44: learn: 0.1047171 total: 90.3ms remaining: 997ms 45: learn: 0.1044690 total: 92.2ms remaining: 994ms 46: learn: 0.1011383 total: 94.4ms remaining: 995ms 47: learn: 0.0993668 total: 96.4ms remaining: 992ms 48: learn: 0.0977029 total: 98.3ms remaining: 989ms 49: learn: 0.0955651 total: 100ms remaining: 987ms 50: learn: 0.0939307 total: 102ms remaining: 984ms 51: learn: 0.0930279 total: 104ms remaining: 980ms 52: learn: 0.0911636 total: 106ms remaining: 980ms 53: learn: 0.0887558 total: 108ms remaining: 978ms 54: learn: 0.0880766 total: 110ms remaining: 974ms 55: learn: 0.0863760 total: 112ms remaining: 971ms 56: learn: 0.0838589 total: 114ms remaining: 967ms 57: learn: 0.0818134 total: 115ms remaining: 963ms 58: learn: 0.0798406 total: 117ms remaining: 961ms 59: learn: 0.0787985 total: 120ms remaining: 962ms 60: learn: 0.0759910 total: 122ms remaining: 964ms 61: learn: 0.0745651 total: 126ms remaining: 973ms 62: learn: 0.0728024 total: 129ms remaining: 978ms 63: learn: 0.0710243 total: 131ms remaining: 980ms 64: learn: 0.0698273 total: 134ms remaining: 985ms 65: learn: 0.0679292 total: 137ms remaining: 987ms 66: learn: 0.0678552 total: 141ms remaining: 1s 67: learn: 0.0664682 total: 144ms remaining: 1s 68: learn: 0.0650745 total: 199ms remaining: 1.36s 69: learn: 0.0641333 total: 202ms remaining: 1.36s 70: learn: 0.0628670 total: 205ms remaining: 1.36s 71: learn: 0.0617233 total: 207ms remaining: 1.35s 72: learn: 0.0608342 total: 209ms remaining: 1.34s 73: learn: 0.0594987 total: 212ms remaining: 1.34s 74: learn: 0.0588947 total: 242ms remaining: 1.51s 75: learn: 0.0574285 total: 247ms remaining: 1.51s 76: learn: 0.0562192 total: 250ms remaining: 1.51s 77: learn: 0.0552051 total: 253ms remaining: 1.5s 78: learn: 0.0543492 total: 255ms remaining: 1.5s 79: learn: 0.0534488 total: 257ms remaining: 1.49s 80: learn: 0.0527620 total: 260ms remaining: 1.48s 81: learn: 0.0518792 total: 262ms remaining: 1.47s 82: learn: 0.0518214 total: 264ms remaining: 1.46s 83: learn: 0.0509130 total: 267ms remaining: 1.45s 84: learn: 0.0502542 total: 272ms remaining: 1.46s 85: learn: 0.0494121 total: 279ms remaining: 1.48s 86: learn: 0.0488483 total: 298ms remaining: 1.56s 87: learn: 0.0483052 total: 300ms remaining: 1.55s 88: learn: 0.0478900 total: 302ms remaining: 1.54s 89: learn: 0.0468684 total: 304ms remaining: 1.53s 90: learn: 0.0459949 total: 306ms remaining: 1.52s 91: learn: 0.0451340 total: 308ms remaining: 1.51s 92: learn: 0.0451142 total: 320ms remaining: 1.55s 93: learn: 0.0449909 total: 323ms remaining: 1.54s 94: learn: 0.0447363 total: 328ms remaining: 1.54s 95: learn: 0.0442586 total: 336ms remaining: 1.56s 96: learn: 0.0433779 total: 342ms remaining: 1.57s 97: learn: 0.0432757 total: 345ms remaining: 1.56s 98: learn: 0.0430815 total: 348ms remaining: 1.56s 99: learn: 0.0425846 total: 350ms remaining: 1.55s 100: learn: 0.0425085 total: 359ms remaining: 1.57s 101: learn: 0.0418052 total: 364ms remaining: 1.57s 102: learn: 0.0415488 total: 367ms remaining: 1.56s 103: learn: 0.0414744 total: 372ms remaining: 1.56s 104: learn: 0.0407193 total: 374ms remaining: 1.56s 105: learn: 0.0400532 total: 377ms remaining: 1.55s 106: learn: 0.0398964 total: 379ms remaining: 1.54s 107: learn: 0.0392215 total: 381ms remaining: 1.53s 108: learn: 0.0392077 total: 383ms remaining: 1.52s 109: learn: 0.0385891 total: 386ms remaining: 1.51s 110: learn: 0.0384697 total: 388ms remaining: 1.51s 111: learn: 0.0380051 total: 390ms remaining: 1.5s 112: learn: 0.0379673 total: 392ms remaining: 1.49s 113: learn: 0.0374928 total: 395ms remaining: 1.48s 114: learn: 0.0370929 total: 398ms remaining: 1.48s 115: learn: 0.0370283 total: 401ms remaining: 1.47s 116: learn: 0.0365893 total: 403ms remaining: 1.46s 117: learn: 0.0360569 total: 405ms remaining: 1.46s 118: learn: 0.0356770 total: 408ms remaining: 1.45s 119: learn: 0.0352814 total: 410ms remaining: 1.44s 120: learn: 0.0352196 total: 413ms remaining: 1.44s 121: learn: 0.0344624 total: 414ms remaining: 1.43s 122: learn: 0.0339909 total: 416ms remaining: 1.42s 123: learn: 0.0335368 total: 419ms remaining: 1.41s 124: learn: 0.0332013 total: 421ms remaining: 1.4s 125: learn: 0.0324301 total: 423ms remaining: 1.4s 126: learn: 0.0321857 total: 425ms remaining: 1.39s 127: learn: 0.0317680 total: 427ms remaining: 1.38s 128: learn: 0.0313961 total: 429ms remaining: 1.37s 129: learn: 0.0311029 total: 431ms remaining: 1.36s 130: learn: 0.0310538 total: 432ms remaining: 1.36s 131: learn: 0.0306942 total: 434ms remaining: 1.35s 132: learn: 0.0302379 total: 436ms remaining: 1.34s 133: learn: 0.0299661 total: 438ms remaining: 1.33s 134: learn: 0.0297964 total: 440ms remaining: 1.32s 135: learn: 0.0293727 total: 442ms remaining: 1.32s 136: learn: 0.0289430 total: 443ms remaining: 1.31s 137: learn: 0.0289352 total: 445ms remaining: 1.3s 138: learn: 0.0286147 total: 447ms remaining: 1.29s 139: learn: 0.0282784 total: 448ms remaining: 1.29s 140: learn: 0.0279549 total: 450ms remaining: 1.28s 141: learn: 0.0275928 total: 452ms remaining: 1.27s 142: learn: 0.0275548 total: 454ms remaining: 1.27s 143: learn: 0.0272642 total: 457ms remaining: 1.26s 144: learn: 0.0267877 total: 459ms remaining: 1.26s 145: learn: 0.0264559 total: 470ms remaining: 1.27s 146: learn: 0.0261028 total: 502ms remaining: 1.35s 147: learn: 0.0259082 total: 504ms remaining: 1.34s 148: learn: 0.0257313 total: 507ms remaining: 1.34s 149: learn: 0.0256885 total: 509ms remaining: 1.33s 150: learn: 0.0254333 total: 511ms remaining: 1.32s 151: learn: 0.0253953 total: 514ms remaining: 1.32s 152: learn: 0.0250054 total: 516ms remaining: 1.31s 153: learn: 0.0249424 total: 518ms remaining: 1.3s 154: learn: 0.0246161 total: 520ms remaining: 1.3s 155: learn: 0.0245806 total: 522ms remaining: 1.29s 156: learn: 0.0244452 total: 524ms remaining: 1.28s 157: learn: 0.0244103 total: 526ms remaining: 1.28s 158: learn: 0.0242898 total: 527ms remaining: 1.27s 159: learn: 0.0241406 total: 530ms remaining: 1.26s 160: learn: 0.0238160 total: 532ms remaining: 1.26s 161: learn: 0.0235883 total: 533ms remaining: 1.25s 162: learn: 0.0232611 total: 535ms remaining: 1.24s 163: learn: 0.0232307 total: 537ms remaining: 1.24s 164: learn: 0.0231250 total: 540ms remaining: 1.23s 165: learn: 0.0230299 total: 542ms remaining: 1.23s 166: learn: 0.0228729 total: 545ms remaining: 1.22s 167: learn: 0.0226616 total: 547ms remaining: 1.22s 168: learn: 0.0225133 total: 550ms remaining: 1.21s 169: learn: 0.0224261 total: 552ms remaining: 1.21s 170: learn: 0.0223753 total: 555ms remaining: 1.2s 171: learn: 0.0222319 total: 558ms remaining: 1.2s 172: learn: 0.0222029 total: 561ms remaining: 1.2s 173: learn: 0.0221562 total: 563ms remaining: 1.19s 174: learn: 0.0219382 total: 566ms remaining: 1.19s 175: learn: 0.0218951 total: 569ms remaining: 1.18s 176: learn: 0.0217474 total: 571ms remaining: 1.18s 177: learn: 0.0217136 total: 573ms remaining: 1.17s 178: learn: 0.0215814 total: 576ms remaining: 1.17s 179: learn: 0.0214392 total: 579ms remaining: 1.16s 180: learn: 0.0213967 total: 581ms remaining: 1.16s 181: learn: 0.0213589 total: 583ms remaining: 1.15s 182: learn: 0.0213340 total: 586ms remaining: 1.15s 183: learn: 0.0212999 total: 588ms remaining: 1.14s 184: learn: 0.0212663 total: 590ms remaining: 1.14s 185: learn: 0.0212496 total: 592ms remaining: 1.13s 186: learn: 0.0211090 total: 594ms remaining: 1.13s 187: learn: 0.0209708 total: 596ms remaining: 1.12s 188: learn: 0.0208606 total: 598ms remaining: 1.12s 189: learn: 0.0208605 total: 600ms remaining: 1.11s 190: learn: 0.0208605 total: 602ms remaining: 1.11s 191: learn: 0.0208605 total: 604ms remaining: 1.1s 192: learn: 0.0208599 total: 606ms remaining: 1.09s 193: learn: 0.0208600 total: 608ms remaining: 1.09s 194: learn: 0.0208600 total: 610ms remaining: 1.08s 195: learn: 0.0208595 total: 612ms remaining: 1.08s 196: learn: 0.0208595 total: 613ms remaining: 1.07s 197: learn: 0.0208594 total: 615ms remaining: 1.07s 198: learn: 0.0208593 total: 617ms remaining: 1.06s 199: learn: 0.0208593 total: 619ms remaining: 1.06s 200: learn: 0.0208582 total: 622ms remaining: 1.05s 201: learn: 0.0208566 total: 623ms remaining: 1.05s 202: learn: 0.0208564 total: 625ms remaining: 1.04s 203: learn: 0.0208560 total: 627ms remaining: 1.04s 204: learn: 0.0208559 total: 628ms remaining: 1.03s 205: learn: 0.0208553 total: 630ms remaining: 1.03s 206: learn: 0.0208554 total: 631ms remaining: 1.02s 207: learn: 0.0208541 total: 633ms remaining: 1.02s 208: learn: 0.0208541 total: 635ms remaining: 1.01s 209: learn: 0.0208541 total: 636ms remaining: 1s 210: learn: 0.0208541 total: 638ms remaining: 1s 211: learn: 0.0208539 total: 639ms remaining: 995ms 212: learn: 0.0208535 total: 641ms remaining: 989ms 213: learn: 0.0208535 total: 642ms remaining: 984ms 214: learn: 0.0208534 total: 644ms remaining: 979ms 215: learn: 0.0208532 total: 645ms remaining: 974ms 216: learn: 0.0208531 total: 647ms remaining: 968ms 217: learn: 0.0208532 total: 648ms remaining: 964ms 218: learn: 0.0208519 total: 651ms remaining: 959ms 219: learn: 0.0208517 total: 652ms remaining: 955ms 220: learn: 0.0208515 total: 654ms remaining: 950ms 221: learn: 0.0208513 total: 655ms remaining: 945ms 222: learn: 0.0208511 total: 657ms remaining: 940ms 223: learn: 0.0208510 total: 659ms remaining: 935ms 224: learn: 0.0208506 total: 660ms remaining: 930ms 225: learn: 0.0208505 total: 662ms remaining: 925ms 226: learn: 0.0208493 total: 664ms remaining: 921ms 227: learn: 0.0208490 total: 665ms remaining: 916ms 228: learn: 0.0208489 total: 667ms remaining: 912ms 229: learn: 0.0208486 total: 669ms remaining: 908ms 230: learn: 0.0208484 total: 688ms remaining: 926ms 231: learn: 0.0206687 total: 690ms remaining: 922ms 232: learn: 0.0206490 total: 691ms remaining: 917ms 233: learn: 0.0206245 total: 693ms remaining: 912ms 234: learn: 0.0205944 total: 695ms remaining: 908ms 235: learn: 0.0203100 total: 696ms remaining: 903ms 236: learn: 0.0202351 total: 698ms remaining: 898ms 237: learn: 0.0201340 total: 699ms remaining: 893ms 238: learn: 0.0199051 total: 701ms remaining: 889ms 239: learn: 0.0198859 total: 703ms remaining: 884ms 240: learn: 0.0198179 total: 704ms remaining: 880ms 241: learn: 0.0197285 total: 706ms remaining: 876ms 242: learn: 0.0196438 total: 708ms remaining: 871ms 243: learn: 0.0195288 total: 710ms remaining: 867ms 244: learn: 0.0194899 total: 712ms remaining: 863ms 245: learn: 0.0194735 total: 714ms remaining: 859ms 246: learn: 0.0194461 total: 716ms remaining: 855ms 247: learn: 0.0193025 total: 717ms remaining: 850ms 248: learn: 0.0190974 total: 719ms remaining: 846ms 249: learn: 0.0190940 total: 721ms remaining: 842ms 250: learn: 0.0190794 total: 723ms remaining: 838ms 251: learn: 0.0189752 total: 724ms remaining: 834ms 252: learn: 0.0187750 total: 726ms remaining: 829ms 253: learn: 0.0187640 total: 728ms remaining: 825ms 254: learn: 0.0187500 total: 730ms remaining: 821ms 255: learn: 0.0187358 total: 732ms remaining: 818ms 256: learn: 0.0186250 total: 734ms remaining: 813ms 257: learn: 0.0185768 total: 736ms remaining: 810ms 258: learn: 0.0183818 total: 738ms remaining: 806ms 259: learn: 0.0183676 total: 740ms remaining: 802ms 260: learn: 0.0183479 total: 742ms remaining: 799ms 261: learn: 0.0182660 total: 744ms remaining: 795ms 262: learn: 0.0181742 total: 746ms remaining: 792ms 263: learn: 0.0180889 total: 748ms remaining: 788ms 264: learn: 0.0179550 total: 751ms remaining: 785ms 265: learn: 0.0179110 total: 753ms remaining: 781ms 266: learn: 0.0178225 total: 755ms remaining: 777ms 267: learn: 0.0177186 total: 757ms remaining: 773ms 268: learn: 0.0175784 total: 758ms remaining: 770ms 269: learn: 0.0174032 total: 760ms remaining: 766ms 270: learn: 0.0173571 total: 762ms remaining: 762ms 271: learn: 0.0173331 total: 764ms remaining: 758ms 272: learn: 0.0172106 total: 765ms remaining: 754ms 273: learn: 0.0171688 total: 767ms remaining: 751ms 274: learn: 0.0171431 total: 769ms remaining: 747ms 275: learn: 0.0170678 total: 771ms remaining: 743ms 276: learn: 0.0169731 total: 773ms remaining: 740ms 277: learn: 0.0169578 total: 775ms remaining: 736ms 278: learn: 0.0169245 total: 777ms remaining: 732ms 279: learn: 0.0167901 total: 779ms remaining: 729ms 280: learn: 0.0166225 total: 781ms remaining: 725ms 281: learn: 0.0165309 total: 805ms remaining: 742ms 282: learn: 0.0163092 total: 807ms remaining: 739ms 283: learn: 0.0162448 total: 809ms remaining: 735ms 284: learn: 0.0161128 total: 811ms remaining: 731ms 285: learn: 0.0160749 total: 813ms remaining: 727ms 286: learn: 0.0159618 total: 814ms remaining: 724ms 287: learn: 0.0157805 total: 816ms remaining: 720ms 288: learn: 0.0157469 total: 818ms remaining: 716ms 289: learn: 0.0156526 total: 821ms remaining: 713ms 290: learn: 0.0156206 total: 823ms remaining: 710ms 291: learn: 0.0156120 total: 824ms remaining: 706ms 292: learn: 0.0156039 total: 826ms remaining: 702ms 293: learn: 0.0155948 total: 828ms remaining: 699ms 294: learn: 0.0155208 total: 831ms remaining: 696ms 295: learn: 0.0155207 total: 833ms remaining: 692ms 296: learn: 0.0153484 total: 835ms remaining: 689ms 297: learn: 0.0153471 total: 837ms remaining: 685ms 298: learn: 0.0153416 total: 839ms remaining: 682ms 299: learn: 0.0153360 total: 842ms remaining: 679ms 300: learn: 0.0153359 total: 843ms remaining: 675ms 301: learn: 0.0153356 total: 846ms remaining: 672ms 302: learn: 0.0153355 total: 848ms remaining: 669ms 303: learn: 0.0153355 total: 849ms remaining: 665ms 304: learn: 0.0153351 total: 851ms remaining: 661ms 305: learn: 0.0153350 total: 853ms remaining: 658ms 306: learn: 0.0153343 total: 855ms remaining: 654ms 307: learn: 0.0153112 total: 857ms remaining: 651ms 308: learn: 0.0153113 total: 859ms remaining: 647ms 309: learn: 0.0153110 total: 861ms remaining: 644ms 310: learn: 0.0153107 total: 863ms remaining: 641ms 311: learn: 0.0153108 total: 864ms remaining: 637ms 312: learn: 0.0153100 total: 866ms remaining: 634ms 313: learn: 0.0153098 total: 868ms remaining: 630ms 314: learn: 0.0153093 total: 869ms remaining: 627ms 315: learn: 0.0153092 total: 871ms remaining: 623ms 316: learn: 0.0153091 total: 873ms remaining: 620ms 317: learn: 0.0153085 total: 875ms remaining: 617ms 318: learn: 0.0153085 total: 877ms remaining: 613ms 319: learn: 0.0153085 total: 879ms remaining: 610ms 320: learn: 0.0153078 total: 881ms remaining: 606ms 321: learn: 0.0153072 total: 882ms remaining: 603ms 322: learn: 0.0153069 total: 884ms remaining: 600ms 323: learn: 0.0153071 total: 886ms remaining: 596ms 324: learn: 0.0153068 total: 888ms remaining: 593ms 325: learn: 0.0153066 total: 889ms remaining: 589ms 326: learn: 0.0153064 total: 904ms remaining: 595ms 327: learn: 0.0153060 total: 906ms remaining: 591ms 328: learn: 0.0153056 total: 908ms remaining: 588ms 329: learn: 0.0153049 total: 910ms remaining: 584ms 330: learn: 0.0153050 total: 911ms remaining: 581ms 331: learn: 0.0153047 total: 913ms remaining: 578ms 332: learn: 0.0153040 total: 915ms remaining: 574ms 333: learn: 0.0153040 total: 917ms remaining: 571ms 334: learn: 0.0153032 total: 918ms remaining: 567ms 335: learn: 0.0153029 total: 920ms remaining: 564ms 336: learn: 0.0153028 total: 922ms remaining: 561ms 337: learn: 0.0153029 total: 924ms remaining: 558ms 338: learn: 0.0153029 total: 926ms remaining: 554ms 339: learn: 0.0153022 total: 928ms remaining: 551ms 340: learn: 0.0151995 total: 930ms remaining: 548ms 341: learn: 0.0150450 total: 932ms remaining: 545ms 342: learn: 0.0149108 total: 934ms remaining: 542ms 343: learn: 0.0149108 total: 935ms remaining: 538ms 344: learn: 0.0149106 total: 963ms remaining: 550ms 345: learn: 0.0149105 total: 964ms remaining: 546ms 346: learn: 0.0149104 total: 966ms remaining: 543ms 347: learn: 0.0149102 total: 967ms remaining: 539ms 348: learn: 0.0149103 total: 969ms remaining: 536ms 349: learn: 0.0149101 total: 971ms remaining: 532ms 350: learn: 0.0149101 total: 972ms remaining: 529ms 351: learn: 0.0149101 total: 974ms remaining: 526ms 352: learn: 0.0149101 total: 976ms remaining: 522ms 353: learn: 0.0149102 total: 977ms remaining: 519ms 354: learn: 0.0149100 total: 979ms remaining: 516ms 355: learn: 0.0149100 total: 981ms remaining: 513ms 356: learn: 0.0149099 total: 983ms remaining: 509ms 357: learn: 0.0149098 total: 984ms remaining: 506ms 358: learn: 0.0149098 total: 986ms remaining: 503ms 359: learn: 0.0149097 total: 988ms remaining: 499ms 360: learn: 0.0149097 total: 989ms remaining: 496ms 361: learn: 0.0149097 total: 991ms remaining: 493ms 362: learn: 0.0149096 total: 993ms remaining: 489ms 363: learn: 0.0149095 total: 995ms remaining: 486ms 364: learn: 0.0149095 total: 997ms remaining: 483ms 365: learn: 0.0149094 total: 1.02s remaining: 491ms 366: learn: 0.0149094 total: 1.02s remaining: 488ms 367: learn: 0.0149087 total: 1.02s remaining: 484ms 368: learn: 0.0149085 total: 1.03s remaining: 481ms 369: learn: 0.0149086 total: 1.03s remaining: 478ms 370: learn: 0.0149085 total: 1.03s remaining: 475ms 371: learn: 0.0149084 total: 1.03s remaining: 472ms 372: learn: 0.0149084 total: 1.03s remaining: 469ms 373: learn: 0.0149083 total: 1.03s remaining: 465ms 374: learn: 0.0149083 total: 1.04s remaining: 462ms 375: learn: 0.0149082 total: 1.04s remaining: 459ms 376: learn: 0.0149081 total: 1.04s remaining: 456ms 377: learn: 0.0149070 total: 1.04s remaining: 452ms 378: learn: 0.0149070 total: 1.04s remaining: 449ms 379: learn: 0.0149070 total: 1.04s remaining: 446ms 380: learn: 0.0149070 total: 1.05s remaining: 443ms 381: learn: 0.0149069 total: 1.05s remaining: 439ms 382: learn: 0.0149068 total: 1.05s remaining: 436ms 383: learn: 0.0149069 total: 1.05s remaining: 433ms 384: learn: 0.0149068 total: 1.05s remaining: 430ms 385: learn: 0.0149065 total: 1.06s remaining: 427ms 386: learn: 0.0149064 total: 1.06s remaining: 424ms 387: learn: 0.0149064 total: 1.06s remaining: 421ms 388: learn: 0.0149064 total: 1.06s remaining: 418ms 389: learn: 0.0149063 total: 1.06s remaining: 415ms 390: learn: 0.0149063 total: 1.06s remaining: 411ms 391: learn: 0.0149062 total: 1.07s remaining: 408ms 392: learn: 0.0149061 total: 1.07s remaining: 405ms 393: learn: 0.0149059 total: 1.07s remaining: 402ms 394: learn: 0.0148991 total: 1.07s remaining: 399ms 395: learn: 0.0147978 total: 1.07s remaining: 396ms 396: learn: 0.0147698 total: 1.08s remaining: 393ms 397: learn: 0.0147573 total: 1.08s remaining: 390ms 398: learn: 0.0146881 total: 1.08s remaining: 387ms 399: learn: 0.0145933 total: 1.08s remaining: 384ms 400: learn: 0.0145784 total: 1.08s remaining: 381ms 401: learn: 0.0144764 total: 1.08s remaining: 378ms 402: learn: 0.0144519 total: 1.09s remaining: 375ms 403: learn: 0.0143117 total: 1.09s remaining: 372ms 404: learn: 0.0142452 total: 1.09s remaining: 369ms 405: learn: 0.0142126 total: 1.09s remaining: 366ms 406: learn: 0.0140686 total: 1.09s remaining: 363ms 407: learn: 0.0139228 total: 1.1s remaining: 360ms 408: learn: 0.0139227 total: 1.1s remaining: 357ms 409: learn: 0.0138407 total: 1.1s remaining: 354ms 410: learn: 0.0138407 total: 1.1s remaining: 351ms 411: learn: 0.0137825 total: 1.1s remaining: 348ms 412: learn: 0.0137794 total: 1.1s remaining: 345ms 413: learn: 0.0137513 total: 1.11s remaining: 342ms 414: learn: 0.0137454 total: 1.11s remaining: 339ms 415: learn: 0.0136720 total: 1.11s remaining: 336ms 416: learn: 0.0136179 total: 1.11s remaining: 333ms 417: learn: 0.0135372 total: 1.11s remaining: 330ms 418: learn: 0.0134194 total: 1.11s remaining: 328ms 419: learn: 0.0133688 total: 1.12s remaining: 325ms 420: learn: 0.0133100 total: 1.14s remaining: 326ms 421: learn: 0.0132628 total: 1.14s remaining: 323ms 422: learn: 0.0131895 total: 1.14s remaining: 321ms 423: learn: 0.0130985 total: 1.14s remaining: 318ms 424: learn: 0.0129772 total: 1.14s remaining: 315ms 425: learn: 0.0128793 total: 1.14s remaining: 312ms 426: learn: 0.0128263 total: 1.15s remaining: 309ms 427: learn: 0.0128260 total: 1.15s remaining: 306ms 428: learn: 0.0128002 total: 1.15s remaining: 303ms 429: learn: 0.0127708 total: 1.17s remaining: 304ms 430: learn: 0.0127482 total: 1.17s remaining: 301ms 431: learn: 0.0127272 total: 1.17s remaining: 298ms 432: learn: 0.0126150 total: 1.17s remaining: 295ms 433: learn: 0.0124747 total: 1.17s remaining: 292ms 434: learn: 0.0123695 total: 1.17s remaining: 289ms 435: learn: 0.0123294 total: 1.18s remaining: 286ms 436: learn: 0.0123166 total: 1.18s remaining: 283ms 437: learn: 0.0122697 total: 1.18s remaining: 280ms 438: learn: 0.0121847 total: 1.18s remaining: 277ms 439: learn: 0.0121722 total: 1.18s remaining: 274ms 440: learn: 0.0120988 total: 1.18s remaining: 271ms 441: learn: 0.0120318 total: 1.19s remaining: 268ms 442: learn: 0.0120158 total: 1.19s remaining: 265ms 443: learn: 0.0119322 total: 1.19s remaining: 262ms 444: learn: 0.0118705 total: 1.19s remaining: 260ms 445: learn: 0.0118262 total: 1.19s remaining: 257ms 446: learn: 0.0118063 total: 1.19s remaining: 254ms 447: learn: 0.0117458 total: 1.2s remaining: 251ms 448: learn: 0.0117416 total: 1.2s remaining: 248ms 449: learn: 0.0117233 total: 1.2s remaining: 245ms 450: learn: 0.0116609 total: 1.2s remaining: 242ms 451: learn: 0.0116439 total: 1.2s remaining: 239ms 452: learn: 0.0116381 total: 1.2s remaining: 236ms 453: learn: 0.0115504 total: 1.2s remaining: 234ms 454: learn: 0.0115053 total: 1.21s remaining: 231ms 455: learn: 0.0115020 total: 1.21s remaining: 228ms 456: learn: 0.0114366 total: 1.21s remaining: 225ms 457: learn: 0.0113615 total: 1.21s remaining: 222ms 458: learn: 0.0112818 total: 1.21s remaining: 220ms 459: learn: 0.0112815 total: 1.22s remaining: 217ms 460: learn: 0.0112743 total: 1.22s remaining: 214ms 461: learn: 0.0112693 total: 1.22s remaining: 211ms 462: learn: 0.0112300 total: 1.22s remaining: 209ms 463: learn: 0.0112298 total: 1.22s remaining: 206ms 464: learn: 0.0111516 total: 1.23s remaining: 203ms 465: learn: 0.0110816 total: 1.23s remaining: 200ms 466: learn: 0.0109942 total: 1.23s remaining: 198ms 467: learn: 0.0109888 total: 1.23s remaining: 195ms 468: learn: 0.0109562 total: 1.23s remaining: 192ms 469: learn: 0.0109048 total: 1.24s remaining: 189ms 470: learn: 0.0108810 total: 1.24s remaining: 187ms 471: learn: 0.0108809 total: 1.24s remaining: 184ms 472: learn: 0.0108124 total: 1.24s remaining: 181ms 473: learn: 0.0108060 total: 1.24s remaining: 178ms 474: learn: 0.0107175 total: 1.25s remaining: 176ms 475: learn: 0.0106683 total: 1.25s remaining: 173ms 476: learn: 0.0106443 total: 1.25s remaining: 170ms 477: learn: 0.0105757 total: 1.25s remaining: 168ms 478: learn: 0.0105188 total: 1.25s remaining: 165ms 479: learn: 0.0105140 total: 1.25s remaining: 162ms 480: learn: 0.0105047 total: 1.26s remaining: 160ms 481: learn: 0.0104993 total: 1.26s remaining: 157ms 482: learn: 0.0104661 total: 1.26s remaining: 154ms 483: learn: 0.0103940 total: 1.26s remaining: 151ms 484: learn: 0.0103884 total: 1.26s remaining: 149ms 485: learn: 0.0103352 total: 1.27s remaining: 146ms 486: learn: 0.0103205 total: 1.27s remaining: 143ms 487: learn: 0.0102937 total: 1.27s remaining: 141ms 488: learn: 0.0102881 total: 1.27s remaining: 138ms 489: learn: 0.0102373 total: 1.28s remaining: 135ms 490: learn: 0.0102232 total: 1.28s remaining: 133ms 491: learn: 0.0102150 total: 1.28s remaining: 130ms 492: learn: 0.0101570 total: 1.28s remaining: 127ms 493: learn: 0.0101524 total: 1.28s remaining: 125ms 494: learn: 0.0100712 total: 1.28s remaining: 122ms 495: learn: 0.0100659 total: 1.29s remaining: 119ms 496: learn: 0.0100390 total: 1.29s remaining: 117ms 497: learn: 0.0100327 total: 1.29s remaining: 114ms 498: learn: 0.0099897 total: 1.29s remaining: 111ms 499: learn: 0.0099788 total: 1.29s remaining: 109ms 500: learn: 0.0099508 total: 1.3s remaining: 106ms 501: learn: 0.0099486 total: 1.3s remaining: 104ms 502: learn: 0.0099130 total: 1.3s remaining: 101ms 503: learn: 0.0099092 total: 1.3s remaining: 98.3ms 504: learn: 0.0098830 total: 1.3s remaining: 95.7ms 505: learn: 0.0098583 total: 1.31s remaining: 93ms 506: learn: 0.0098578 total: 1.31s remaining: 90.4ms 507: learn: 0.0098533 total: 1.31s remaining: 87.8ms 508: learn: 0.0098444 total: 1.31s remaining: 85.2ms 509: learn: 0.0098159 total: 1.31s remaining: 82.5ms 510: learn: 0.0097607 total: 1.32s remaining: 79.9ms 511: learn: 0.0097098 total: 1.32s remaining: 77.3ms 512: learn: 0.0097055 total: 1.32s remaining: 74.7ms 513: learn: 0.0096485 total: 1.32s remaining: 72.1ms 514: learn: 0.0096460 total: 1.32s remaining: 69.5ms 515: learn: 0.0096044 total: 1.33s remaining: 66.9ms 516: learn: 0.0095546 total: 1.33s remaining: 64.3ms 517: learn: 0.0095142 total: 1.33s remaining: 61.7ms 518: learn: 0.0095130 total: 1.33s remaining: 59.1ms 519: learn: 0.0094712 total: 1.33s remaining: 56.5ms 520: learn: 0.0094227 total: 1.34s remaining: 53.9ms 521: learn: 0.0093943 total: 1.34s remaining: 51.3ms 522: learn: 0.0093567 total: 1.34s remaining: 48.7ms 523: learn: 0.0093204 total: 1.34s remaining: 46.1ms 524: learn: 0.0093030 total: 1.34s remaining: 43.5ms 525: learn: 0.0092996 total: 1.35s remaining: 40.9ms 526: learn: 0.0092632 total: 1.35s remaining: 38.4ms 527: learn: 0.0092632 total: 1.35s remaining: 35.8ms 528: learn: 0.0092210 total: 1.35s remaining: 33.2ms 529: learn: 0.0092164 total: 1.35s remaining: 30.6ms 530: learn: 0.0092034 total: 1.35s remaining: 28.1ms 531: learn: 0.0091921 total: 1.36s remaining: 25.5ms 532: learn: 0.0091468 total: 1.36s remaining: 22.9ms 533: learn: 0.0091250 total: 1.36s remaining: 20.4ms 534: learn: 0.0090986 total: 1.36s remaining: 17.8ms 535: learn: 0.0090900 total: 1.36s remaining: 15.3ms 536: learn: 0.0090596 total: 1.36s remaining: 12.7ms 537: learn: 0.0090215 total: 1.37s remaining: 10.2ms 538: learn: 0.0089790 total: 1.37s remaining: 7.62ms 539: learn: 0.0089642 total: 1.37s remaining: 5.08ms 540: learn: 0.0089403 total: 1.37s remaining: 2.54ms 541: learn: 0.0089064 total: 1.38s remaining: 0us 0: learn: 0.5462232 total: 1.94ms remaining: 1.05s 1: learn: 0.4481282 total: 3.81ms remaining: 1.03s 2: learn: 0.4223634 total: 4.89ms remaining: 879ms 3: learn: 0.3878420 total: 6.54ms remaining: 880ms 4: learn: 0.3492731 total: 8.21ms remaining: 882ms 5: learn: 0.3169058 total: 10.2ms remaining: 911ms 6: learn: 0.3063602 total: 12ms remaining: 918ms 7: learn: 0.2912522 total: 13.8ms remaining: 921ms 8: learn: 0.2784915 total: 15.8ms remaining: 937ms 9: learn: 0.2680335 total: 18.1ms remaining: 961ms 10: learn: 0.2621001 total: 20.5ms remaining: 990ms 11: learn: 0.2466462 total: 22.4ms remaining: 989ms 12: learn: 0.2378492 total: 24ms remaining: 978ms 13: learn: 0.2278061 total: 26ms remaining: 979ms 14: learn: 0.2256873 total: 35.9ms remaining: 1.26s 15: learn: 0.2126807 total: 37.9ms remaining: 1.25s 16: learn: 0.2093381 total: 39.9ms remaining: 1.23s 17: learn: 0.2067944 total: 41.8ms remaining: 1.22s 18: learn: 0.2008839 total: 43.8ms remaining: 1.2s 19: learn: 0.1959558 total: 46ms remaining: 1.2s 20: learn: 0.1912118 total: 47.8ms remaining: 1.19s 21: learn: 0.1876611 total: 49.7ms remaining: 1.17s 22: learn: 0.1800414 total: 51.2ms remaining: 1.16s 23: learn: 0.1759717 total: 52.9ms remaining: 1.14s 24: learn: 0.1688134 total: 54.7ms remaining: 1.13s 25: learn: 0.1645282 total: 56.4ms remaining: 1.12s 26: learn: 0.1606187 total: 58.5ms remaining: 1.12s 27: learn: 0.1561130 total: 60.6ms remaining: 1.11s 28: learn: 0.1511941 total: 62.4ms remaining: 1.1s 29: learn: 0.1477518 total: 64.1ms remaining: 1.09s 30: learn: 0.1428439 total: 66.1ms remaining: 1.09s 31: learn: 0.1375433 total: 67.9ms remaining: 1.08s 32: learn: 0.1343689 total: 69.9ms remaining: 1.08s 33: learn: 0.1310705 total: 72.2ms remaining: 1.08s 34: learn: 0.1234787 total: 74.8ms remaining: 1.08s 35: learn: 0.1210803 total: 77.2ms remaining: 1.08s 36: learn: 0.1206000 total: 79.3ms remaining: 1.08s 37: learn: 0.1185994 total: 81.5ms remaining: 1.08s 38: learn: 0.1168147 total: 83.8ms remaining: 1.08s 39: learn: 0.1153836 total: 85.8ms remaining: 1.08s 40: learn: 0.1118723 total: 87.8ms remaining: 1.07s 41: learn: 0.1087689 total: 90.5ms remaining: 1.08s 42: learn: 0.1053223 total: 93.3ms remaining: 1.08s 43: learn: 0.1022122 total: 95.2ms remaining: 1.08s 44: learn: 0.1003471 total: 97.6ms remaining: 1.08s 45: learn: 0.0984609 total: 99.8ms remaining: 1.08s 46: learn: 0.0956185 total: 102ms remaining: 1.08s 47: learn: 0.0915527 total: 106ms remaining: 1.09s 48: learn: 0.0885963 total: 109ms remaining: 1.1s 49: learn: 0.0873073 total: 112ms remaining: 1.1s 50: learn: 0.0853496 total: 115ms remaining: 1.1s 51: learn: 0.0835771 total: 117ms remaining: 1.1s 52: learn: 0.0820201 total: 120ms remaining: 1.1s 53: learn: 0.0800876 total: 123ms remaining: 1.11s 54: learn: 0.0798378 total: 126ms remaining: 1.11s 55: learn: 0.0792381 total: 129ms remaining: 1.11s 56: learn: 0.0783879 total: 131ms remaining: 1.12s 57: learn: 0.0782159 total: 134ms remaining: 1.12s 58: learn: 0.0778676 total: 137ms remaining: 1.12s 59: learn: 0.0751589 total: 140ms remaining: 1.13s 60: learn: 0.0741868 total: 143ms remaining: 1.13s 61: learn: 0.0735434 total: 145ms remaining: 1.13s 62: learn: 0.0720811 total: 148ms remaining: 1.12s 63: learn: 0.0702709 total: 150ms remaining: 1.12s 64: learn: 0.0690201 total: 152ms remaining: 1.11s 65: learn: 0.0675258 total: 154ms remaining: 1.11s 66: learn: 0.0673166 total: 156ms remaining: 1.11s 67: learn: 0.0663634 total: 159ms remaining: 1.11s 68: learn: 0.0650936 total: 161ms remaining: 1.1s 69: learn: 0.0635859 total: 164ms remaining: 1.11s 70: learn: 0.0618393 total: 167ms remaining: 1.11s 71: learn: 0.0603921 total: 169ms remaining: 1.1s 72: learn: 0.0587403 total: 172ms remaining: 1.1s 73: learn: 0.0583785 total: 175ms remaining: 1.1s 74: learn: 0.0576101 total: 178ms remaining: 1.11s 75: learn: 0.0564366 total: 194ms remaining: 1.19s 76: learn: 0.0549463 total: 196ms remaining: 1.19s 77: learn: 0.0533797 total: 199ms remaining: 1.18s 78: learn: 0.0519224 total: 201ms remaining: 1.18s 79: learn: 0.0513485 total: 203ms remaining: 1.17s 80: learn: 0.0500414 total: 205ms remaining: 1.17s 81: learn: 0.0496808 total: 208ms remaining: 1.17s 82: learn: 0.0485737 total: 211ms remaining: 1.17s 83: learn: 0.0477186 total: 214ms remaining: 1.17s 84: learn: 0.0464761 total: 217ms remaining: 1.17s 85: learn: 0.0457213 total: 221ms remaining: 1.17s 86: learn: 0.0451813 total: 223ms remaining: 1.17s 87: learn: 0.0443242 total: 226ms remaining: 1.16s 88: learn: 0.0435829 total: 228ms remaining: 1.16s 89: learn: 0.0435107 total: 230ms remaining: 1.15s 90: learn: 0.0431989 total: 232ms remaining: 1.15s 91: learn: 0.0423142 total: 234ms remaining: 1.15s 92: learn: 0.0414569 total: 237ms remaining: 1.15s 93: learn: 0.0409319 total: 239ms remaining: 1.14s 94: learn: 0.0403143 total: 241ms remaining: 1.14s 95: learn: 0.0399690 total: 244ms remaining: 1.13s 96: learn: 0.0398705 total: 246ms remaining: 1.13s 97: learn: 0.0396400 total: 249ms remaining: 1.13s 98: learn: 0.0394480 total: 252ms remaining: 1.13s 99: learn: 0.0391374 total: 255ms remaining: 1.13s 100: learn: 0.0388782 total: 257ms remaining: 1.12s 101: learn: 0.0382279 total: 259ms remaining: 1.12s 102: learn: 0.0379604 total: 261ms remaining: 1.11s 103: learn: 0.0375874 total: 263ms remaining: 1.11s 104: learn: 0.0375164 total: 265ms remaining: 1.1s 105: learn: 0.0370523 total: 267ms remaining: 1.1s 106: learn: 0.0368438 total: 271ms remaining: 1.1s 107: learn: 0.0365629 total: 274ms remaining: 1.1s 108: learn: 0.0361677 total: 277ms remaining: 1.1s 109: learn: 0.0360146 total: 280ms remaining: 1.1s 110: learn: 0.0357859 total: 285ms remaining: 1.1s 111: learn: 0.0354980 total: 293ms remaining: 1.13s 112: learn: 0.0353129 total: 296ms remaining: 1.12s 113: learn: 0.0350455 total: 323ms remaining: 1.21s 114: learn: 0.0349788 total: 325ms remaining: 1.21s 115: learn: 0.0348924 total: 327ms remaining: 1.2s 116: learn: 0.0347056 total: 329ms remaining: 1.19s 117: learn: 0.0344778 total: 331ms remaining: 1.19s 118: learn: 0.0342891 total: 332ms remaining: 1.18s 119: learn: 0.0341195 total: 334ms remaining: 1.18s 120: learn: 0.0339386 total: 336ms remaining: 1.17s 121: learn: 0.0337933 total: 338ms remaining: 1.16s 122: learn: 0.0332538 total: 340ms remaining: 1.16s 123: learn: 0.0326110 total: 342ms remaining: 1.15s 124: learn: 0.0322800 total: 344ms remaining: 1.15s 125: learn: 0.0316953 total: 346ms remaining: 1.14s 126: learn: 0.0314186 total: 347ms remaining: 1.13s 127: learn: 0.0310274 total: 349ms remaining: 1.13s 128: learn: 0.0309184 total: 351ms remaining: 1.12s 129: learn: 0.0307077 total: 352ms remaining: 1.12s 130: learn: 0.0303400 total: 354ms remaining: 1.11s 131: learn: 0.0302933 total: 356ms remaining: 1.11s 132: learn: 0.0300932 total: 359ms remaining: 1.1s 133: learn: 0.0299046 total: 361ms remaining: 1.1s 134: learn: 0.0297765 total: 363ms remaining: 1.09s 135: learn: 0.0294156 total: 366ms remaining: 1.09s 136: learn: 0.0292020 total: 368ms remaining: 1.09s 137: learn: 0.0290537 total: 370ms remaining: 1.08s 138: learn: 0.0288690 total: 372ms remaining: 1.08s 139: learn: 0.0287612 total: 374ms remaining: 1.07s 140: learn: 0.0285253 total: 376ms remaining: 1.07s 141: learn: 0.0282760 total: 378ms remaining: 1.06s 142: learn: 0.0278096 total: 379ms remaining: 1.06s 143: learn: 0.0274291 total: 381ms remaining: 1.05s 144: learn: 0.0273679 total: 383ms remaining: 1.05s 145: learn: 0.0271021 total: 385ms remaining: 1.04s 146: learn: 0.0269212 total: 387ms remaining: 1.04s 147: learn: 0.0269004 total: 390ms remaining: 1.04s 148: learn: 0.0268318 total: 392ms remaining: 1.03s 149: learn: 0.0267039 total: 394ms remaining: 1.03s 150: learn: 0.0264488 total: 397ms remaining: 1.03s 151: learn: 0.0262861 total: 399ms remaining: 1.02s 152: learn: 0.0262451 total: 401ms remaining: 1.02s 153: learn: 0.0258393 total: 403ms remaining: 1.01s 154: learn: 0.0258071 total: 404ms remaining: 1.01s 155: learn: 0.0257759 total: 406ms remaining: 1s 156: learn: 0.0252997 total: 408ms remaining: 1s 157: learn: 0.0251353 total: 410ms remaining: 998ms 158: learn: 0.0249112 total: 413ms remaining: 994ms 159: learn: 0.0248052 total: 415ms remaining: 991ms 160: learn: 0.0246061 total: 417ms remaining: 988ms 161: learn: 0.0244320 total: 419ms remaining: 984ms 162: learn: 0.0242637 total: 421ms remaining: 980ms 163: learn: 0.0240896 total: 423ms remaining: 975ms 164: learn: 0.0240073 total: 425ms remaining: 971ms 165: learn: 0.0237043 total: 427ms remaining: 966ms 166: learn: 0.0234466 total: 428ms remaining: 962ms 167: learn: 0.0233448 total: 430ms remaining: 958ms 168: learn: 0.0232565 total: 432ms remaining: 954ms 169: learn: 0.0232087 total: 434ms remaining: 950ms 170: learn: 0.0229560 total: 436ms remaining: 946ms 171: learn: 0.0227764 total: 438ms remaining: 942ms 172: learn: 0.0225917 total: 440ms remaining: 939ms 173: learn: 0.0223844 total: 442ms remaining: 935ms 174: learn: 0.0223412 total: 445ms remaining: 932ms 175: learn: 0.0221555 total: 447ms remaining: 930ms 176: learn: 0.0221331 total: 449ms remaining: 926ms 177: learn: 0.0219202 total: 452ms remaining: 924ms 178: learn: 0.0215429 total: 454ms remaining: 920ms 179: learn: 0.0215060 total: 456ms remaining: 918ms 180: learn: 0.0213688 total: 458ms remaining: 914ms 181: learn: 0.0211688 total: 460ms remaining: 910ms 182: learn: 0.0210164 total: 462ms remaining: 906ms 183: learn: 0.0208841 total: 463ms remaining: 902ms 184: learn: 0.0207634 total: 465ms remaining: 897ms 185: learn: 0.0205252 total: 467ms remaining: 893ms 186: learn: 0.0202581 total: 468ms remaining: 889ms 187: learn: 0.0200209 total: 470ms remaining: 886ms 188: learn: 0.0198013 total: 472ms remaining: 882ms 189: learn: 0.0195307 total: 474ms remaining: 878ms 190: learn: 0.0195093 total: 476ms remaining: 875ms 191: learn: 0.0193928 total: 478ms remaining: 871ms 192: learn: 0.0192132 total: 479ms remaining: 867ms 193: learn: 0.0190335 total: 481ms remaining: 863ms 194: learn: 0.0189846 total: 483ms remaining: 859ms 195: learn: 0.0188626 total: 484ms remaining: 855ms 196: learn: 0.0187501 total: 486ms remaining: 852ms 197: learn: 0.0187345 total: 488ms remaining: 848ms 198: learn: 0.0185768 total: 490ms remaining: 844ms 199: learn: 0.0185381 total: 492ms remaining: 841ms 200: learn: 0.0183466 total: 493ms remaining: 837ms 201: learn: 0.0182416 total: 495ms remaining: 833ms 202: learn: 0.0181586 total: 497ms remaining: 830ms 203: learn: 0.0181127 total: 499ms remaining: 826ms 204: learn: 0.0179161 total: 500ms remaining: 823ms 205: learn: 0.0177340 total: 513ms remaining: 837ms 206: learn: 0.0175154 total: 515ms remaining: 833ms 207: learn: 0.0174207 total: 517ms remaining: 830ms 208: learn: 0.0172918 total: 519ms remaining: 826ms 209: learn: 0.0170658 total: 520ms remaining: 823ms 210: learn: 0.0170104 total: 522ms remaining: 819ms 211: learn: 0.0168230 total: 524ms remaining: 815ms 212: learn: 0.0166865 total: 526ms remaining: 812ms 213: learn: 0.0165908 total: 527ms remaining: 808ms 214: learn: 0.0163602 total: 529ms remaining: 805ms 215: learn: 0.0163484 total: 531ms remaining: 801ms 216: learn: 0.0163141 total: 532ms remaining: 797ms 217: learn: 0.0162660 total: 535ms remaining: 794ms 218: learn: 0.0161455 total: 536ms remaining: 791ms 219: learn: 0.0160963 total: 538ms remaining: 788ms 220: learn: 0.0159259 total: 540ms remaining: 785ms 221: learn: 0.0157545 total: 542ms remaining: 782ms 222: learn: 0.0156569 total: 544ms remaining: 778ms 223: learn: 0.0155447 total: 546ms remaining: 775ms 224: learn: 0.0153317 total: 548ms remaining: 772ms 225: learn: 0.0151548 total: 550ms remaining: 769ms 226: learn: 0.0150323 total: 552ms remaining: 766ms 227: learn: 0.0149926 total: 554ms remaining: 763ms 228: learn: 0.0148865 total: 556ms remaining: 759ms 229: learn: 0.0148735 total: 557ms remaining: 756ms 230: learn: 0.0147872 total: 559ms remaining: 753ms 231: learn: 0.0146567 total: 561ms remaining: 749ms 232: learn: 0.0145440 total: 563ms remaining: 746ms 233: learn: 0.0144196 total: 564ms remaining: 743ms 234: learn: 0.0142875 total: 566ms remaining: 740ms 235: learn: 0.0141890 total: 568ms remaining: 736ms 236: learn: 0.0141171 total: 570ms remaining: 734ms 237: learn: 0.0140023 total: 572ms remaining: 730ms 238: learn: 0.0139154 total: 574ms remaining: 727ms 239: learn: 0.0138787 total: 575ms remaining: 724ms 240: learn: 0.0137982 total: 577ms remaining: 721ms 241: learn: 0.0136988 total: 579ms remaining: 718ms 242: learn: 0.0135876 total: 581ms remaining: 715ms 243: learn: 0.0135158 total: 583ms remaining: 712ms 244: learn: 0.0134392 total: 585ms remaining: 709ms 245: learn: 0.0134018 total: 586ms remaining: 706ms 246: learn: 0.0133252 total: 588ms remaining: 703ms 247: learn: 0.0132315 total: 590ms remaining: 700ms 248: learn: 0.0131982 total: 592ms remaining: 697ms 249: learn: 0.0131700 total: 594ms remaining: 693ms 250: learn: 0.0131463 total: 596ms remaining: 691ms 251: learn: 0.0130503 total: 598ms remaining: 689ms 252: learn: 0.0130239 total: 601ms remaining: 687ms 253: learn: 0.0129336 total: 603ms remaining: 684ms 254: learn: 0.0129214 total: 605ms remaining: 681ms 255: learn: 0.0128852 total: 613ms remaining: 685ms 256: learn: 0.0128178 total: 615ms remaining: 682ms 257: learn: 0.0127754 total: 617ms remaining: 679ms 258: learn: 0.0127173 total: 619ms remaining: 676ms 259: learn: 0.0126548 total: 628ms remaining: 681ms 260: learn: 0.0125900 total: 630ms remaining: 678ms 261: learn: 0.0125346 total: 632ms remaining: 675ms 262: learn: 0.0124447 total: 634ms remaining: 672ms 263: learn: 0.0124289 total: 636ms remaining: 669ms 264: learn: 0.0123962 total: 674ms remaining: 704ms 265: learn: 0.0123819 total: 676ms remaining: 701ms 266: learn: 0.0123633 total: 677ms remaining: 698ms 267: learn: 0.0123048 total: 679ms remaining: 694ms 268: learn: 0.0122642 total: 681ms remaining: 691ms 269: learn: 0.0121602 total: 683ms remaining: 688ms 270: learn: 0.0120638 total: 684ms remaining: 684ms 271: learn: 0.0120478 total: 686ms remaining: 681ms 272: learn: 0.0119599 total: 688ms remaining: 678ms 273: learn: 0.0119360 total: 690ms remaining: 675ms 274: learn: 0.0119036 total: 691ms remaining: 671ms 275: learn: 0.0118529 total: 693ms remaining: 668ms 276: learn: 0.0117815 total: 695ms remaining: 665ms 277: learn: 0.0117299 total: 697ms remaining: 662ms 278: learn: 0.0116843 total: 698ms remaining: 658ms 279: learn: 0.0116749 total: 700ms remaining: 655ms 280: learn: 0.0115991 total: 702ms remaining: 652ms 281: learn: 0.0115518 total: 704ms remaining: 649ms 282: learn: 0.0115260 total: 706ms remaining: 646ms 283: learn: 0.0115076 total: 708ms remaining: 643ms 284: learn: 0.0114642 total: 710ms remaining: 640ms 285: learn: 0.0114211 total: 712ms remaining: 637ms 286: learn: 0.0113576 total: 714ms remaining: 634ms 287: learn: 0.0113442 total: 716ms remaining: 631ms 288: learn: 0.0113265 total: 717ms remaining: 628ms 289: learn: 0.0112635 total: 719ms remaining: 625ms 290: learn: 0.0111725 total: 721ms remaining: 622ms 291: learn: 0.0111329 total: 723ms remaining: 619ms 292: learn: 0.0110861 total: 725ms remaining: 616ms 293: learn: 0.0110681 total: 727ms remaining: 613ms 294: learn: 0.0110263 total: 729ms remaining: 610ms 295: learn: 0.0109638 total: 730ms remaining: 607ms 296: learn: 0.0109478 total: 732ms remaining: 604ms 297: learn: 0.0109127 total: 734ms remaining: 601ms 298: learn: 0.0108978 total: 737ms remaining: 599ms 299: learn: 0.0108606 total: 739ms remaining: 596ms 300: learn: 0.0108350 total: 746ms remaining: 597ms 301: learn: 0.0108005 total: 748ms remaining: 595ms 302: learn: 0.0108005 total: 750ms remaining: 591ms 303: learn: 0.0107895 total: 752ms remaining: 589ms 304: learn: 0.0107278 total: 753ms remaining: 585ms 305: learn: 0.0106400 total: 755ms remaining: 582ms 306: learn: 0.0106279 total: 757ms remaining: 579ms 307: learn: 0.0106074 total: 759ms remaining: 576ms 308: learn: 0.0105961 total: 760ms remaining: 573ms 309: learn: 0.0105860 total: 763ms remaining: 571ms 310: learn: 0.0105608 total: 764ms remaining: 568ms 311: learn: 0.0105379 total: 766ms remaining: 565ms 312: learn: 0.0104754 total: 768ms remaining: 562ms 313: learn: 0.0104470 total: 770ms remaining: 559ms 314: learn: 0.0103907 total: 772ms remaining: 557ms 315: learn: 0.0103657 total: 774ms remaining: 554ms 316: learn: 0.0103131 total: 776ms remaining: 551ms 317: learn: 0.0102567 total: 778ms remaining: 548ms 318: learn: 0.0101967 total: 780ms remaining: 545ms 319: learn: 0.0101676 total: 782ms remaining: 542ms 320: learn: 0.0100644 total: 783ms remaining: 539ms 321: learn: 0.0100295 total: 785ms remaining: 536ms 322: learn: 0.0100155 total: 787ms remaining: 533ms 323: learn: 0.0099994 total: 789ms remaining: 531ms 324: learn: 0.0099361 total: 791ms remaining: 528ms 325: learn: 0.0098944 total: 793ms remaining: 525ms 326: learn: 0.0098314 total: 795ms remaining: 523ms 327: learn: 0.0098086 total: 797ms remaining: 520ms 328: learn: 0.0097571 total: 799ms remaining: 517ms 329: learn: 0.0096993 total: 801ms remaining: 514ms 330: learn: 0.0096462 total: 803ms remaining: 512ms 331: learn: 0.0096293 total: 805ms remaining: 509ms 332: learn: 0.0096199 total: 807ms remaining: 506ms 333: learn: 0.0096126 total: 808ms remaining: 503ms 334: learn: 0.0095870 total: 810ms remaining: 501ms 335: learn: 0.0095342 total: 812ms remaining: 498ms 336: learn: 0.0094879 total: 814ms remaining: 495ms 337: learn: 0.0094417 total: 815ms remaining: 492ms 338: learn: 0.0093841 total: 817ms remaining: 489ms 339: learn: 0.0093624 total: 819ms remaining: 487ms 340: learn: 0.0093346 total: 821ms remaining: 484ms 341: learn: 0.0093149 total: 823ms remaining: 481ms 342: learn: 0.0093022 total: 825ms remaining: 479ms 343: learn: 0.0092545 total: 827ms remaining: 476ms 344: learn: 0.0092358 total: 829ms remaining: 473ms 345: learn: 0.0091875 total: 831ms remaining: 471ms 346: learn: 0.0091795 total: 833ms remaining: 468ms 347: learn: 0.0091684 total: 835ms remaining: 465ms 348: learn: 0.0091620 total: 837ms remaining: 463ms 349: learn: 0.0091440 total: 838ms remaining: 460ms 350: learn: 0.0091006 total: 840ms remaining: 457ms 351: learn: 0.0090505 total: 842ms remaining: 454ms 352: learn: 0.0090324 total: 843ms remaining: 452ms 353: learn: 0.0089966 total: 845ms remaining: 449ms 354: learn: 0.0089802 total: 847ms remaining: 446ms 355: learn: 0.0089702 total: 849ms remaining: 443ms 356: learn: 0.0089626 total: 850ms remaining: 441ms 357: learn: 0.0089460 total: 852ms remaining: 438ms 358: learn: 0.0088947 total: 854ms remaining: 435ms 359: learn: 0.0088795 total: 856ms remaining: 433ms 360: learn: 0.0088657 total: 857ms remaining: 430ms 361: learn: 0.0088355 total: 859ms remaining: 427ms 362: learn: 0.0088116 total: 861ms remaining: 424ms 363: learn: 0.0087648 total: 862ms remaining: 422ms 364: learn: 0.0087238 total: 864ms remaining: 419ms 365: learn: 0.0086798 total: 866ms remaining: 416ms 366: learn: 0.0086739 total: 868ms remaining: 414ms 367: learn: 0.0086515 total: 869ms remaining: 411ms 368: learn: 0.0086161 total: 871ms remaining: 408ms 369: learn: 0.0085699 total: 873ms remaining: 406ms 370: learn: 0.0085419 total: 874ms remaining: 403ms 371: learn: 0.0085028 total: 876ms remaining: 400ms 372: learn: 0.0084900 total: 878ms remaining: 398ms 373: learn: 0.0084585 total: 880ms remaining: 395ms 374: learn: 0.0084302 total: 881ms remaining: 393ms 375: learn: 0.0084003 total: 884ms remaining: 390ms 376: learn: 0.0083702 total: 886ms remaining: 388ms 377: learn: 0.0083270 total: 888ms remaining: 385ms 378: learn: 0.0083086 total: 890ms remaining: 383ms 379: learn: 0.0082989 total: 892ms remaining: 380ms 380: learn: 0.0082775 total: 894ms remaining: 378ms 381: learn: 0.0082690 total: 896ms remaining: 375ms 382: learn: 0.0082294 total: 898ms remaining: 373ms 383: learn: 0.0082022 total: 900ms remaining: 370ms 384: learn: 0.0081732 total: 902ms remaining: 368ms 385: learn: 0.0081625 total: 904ms remaining: 365ms 386: learn: 0.0081388 total: 905ms remaining: 363ms 387: learn: 0.0081205 total: 907ms remaining: 360ms 388: learn: 0.0081204 total: 908ms remaining: 357ms 389: learn: 0.0081106 total: 910ms remaining: 355ms 390: learn: 0.0080758 total: 912ms remaining: 352ms 391: learn: 0.0080306 total: 914ms remaining: 350ms 392: learn: 0.0080198 total: 916ms remaining: 347ms 393: learn: 0.0080141 total: 918ms remaining: 345ms 394: learn: 0.0079765 total: 920ms remaining: 342ms 395: learn: 0.0079467 total: 922ms remaining: 340ms 396: learn: 0.0079465 total: 923ms remaining: 337ms 397: learn: 0.0079374 total: 925ms remaining: 335ms 398: learn: 0.0079286 total: 927ms remaining: 332ms 399: learn: 0.0079027 total: 929ms remaining: 330ms 400: learn: 0.0078782 total: 931ms remaining: 327ms 401: learn: 0.0078435 total: 933ms remaining: 325ms 402: learn: 0.0078341 total: 935ms remaining: 322ms 403: learn: 0.0078093 total: 936ms remaining: 320ms 404: learn: 0.0078093 total: 938ms remaining: 317ms 405: learn: 0.0077741 total: 940ms remaining: 315ms 406: learn: 0.0077741 total: 941ms remaining: 312ms 407: learn: 0.0077660 total: 943ms remaining: 310ms 408: learn: 0.0077660 total: 944ms remaining: 307ms 409: learn: 0.0077582 total: 946ms remaining: 305ms 410: learn: 0.0077419 total: 948ms remaining: 302ms 411: learn: 0.0077194 total: 950ms remaining: 300ms 412: learn: 0.0076536 total: 951ms remaining: 297ms 413: learn: 0.0076210 total: 953ms remaining: 295ms 414: learn: 0.0076190 total: 955ms remaining: 292ms 415: learn: 0.0076138 total: 956ms remaining: 290ms 416: learn: 0.0076117 total: 958ms remaining: 287ms 417: learn: 0.0075811 total: 960ms remaining: 285ms 418: learn: 0.0075570 total: 962ms remaining: 282ms 419: learn: 0.0075325 total: 963ms remaining: 280ms 420: learn: 0.0075034 total: 965ms remaining: 277ms 421: learn: 0.0075015 total: 967ms remaining: 275ms 422: learn: 0.0074999 total: 969ms remaining: 272ms 423: learn: 0.0074735 total: 970ms remaining: 270ms 424: learn: 0.0074735 total: 972ms remaining: 268ms 425: learn: 0.0074507 total: 974ms remaining: 265ms 426: learn: 0.0074278 total: 976ms remaining: 263ms 427: learn: 0.0074277 total: 978ms remaining: 260ms 428: learn: 0.0074204 total: 979ms remaining: 258ms 429: learn: 0.0073817 total: 981ms remaining: 256ms 430: learn: 0.0073688 total: 983ms remaining: 253ms 431: learn: 0.0073475 total: 985ms remaining: 251ms 432: learn: 0.0073326 total: 987ms remaining: 248ms 433: learn: 0.0073306 total: 988ms remaining: 246ms 434: learn: 0.0073300 total: 990ms remaining: 243ms 435: learn: 0.0072994 total: 991ms remaining: 241ms 436: learn: 0.0072698 total: 993ms remaining: 239ms 437: learn: 0.0072697 total: 995ms remaining: 236ms 438: learn: 0.0072303 total: 996ms remaining: 234ms 439: learn: 0.0072101 total: 998ms remaining: 231ms 440: learn: 0.0071839 total: 1000ms remaining: 229ms 441: learn: 0.0071714 total: 1s remaining: 227ms 442: learn: 0.0071515 total: 1s remaining: 225ms 443: learn: 0.0071303 total: 1.01s remaining: 222ms 444: learn: 0.0071291 total: 1.01s remaining: 220ms 445: learn: 0.0071213 total: 1.01s remaining: 218ms 446: learn: 0.0070873 total: 1.01s remaining: 215ms 447: learn: 0.0070672 total: 1.02s remaining: 214ms 448: learn: 0.0070657 total: 1.02s remaining: 212ms 449: learn: 0.0070378 total: 1.02s remaining: 209ms 450: learn: 0.0070377 total: 1.02s remaining: 207ms 451: learn: 0.0070191 total: 1.03s remaining: 204ms 452: learn: 0.0070020 total: 1.03s remaining: 202ms 453: learn: 0.0070019 total: 1.03s remaining: 200ms 454: learn: 0.0069635 total: 1.03s remaining: 197ms 455: learn: 0.0069627 total: 1.03s remaining: 195ms 456: learn: 0.0069506 total: 1.03s remaining: 192ms 457: learn: 0.0069332 total: 1.04s remaining: 190ms 458: learn: 0.0069330 total: 1.04s remaining: 188ms 459: learn: 0.0069242 total: 1.04s remaining: 185ms 460: learn: 0.0068769 total: 1.04s remaining: 183ms 461: learn: 0.0068555 total: 1.04s remaining: 181ms 462: learn: 0.0068494 total: 1.04s remaining: 178ms 463: learn: 0.0068485 total: 1.04s remaining: 176ms 464: learn: 0.0068478 total: 1.05s remaining: 173ms 465: learn: 0.0068301 total: 1.05s remaining: 171ms 466: learn: 0.0067965 total: 1.05s remaining: 169ms 467: learn: 0.0067964 total: 1.05s remaining: 166ms 468: learn: 0.0067904 total: 1.05s remaining: 164ms 469: learn: 0.0067904 total: 1.05s remaining: 162ms 470: learn: 0.0067644 total: 1.06s remaining: 159ms 471: learn: 0.0067417 total: 1.06s remaining: 157ms 472: learn: 0.0067206 total: 1.06s remaining: 155ms 473: learn: 0.0066994 total: 1.06s remaining: 152ms 474: learn: 0.0066982 total: 1.06s remaining: 150ms 475: learn: 0.0066858 total: 1.06s remaining: 148ms 476: learn: 0.0066729 total: 1.07s remaining: 145ms 477: learn: 0.0066673 total: 1.07s remaining: 143ms 478: learn: 0.0066667 total: 1.07s remaining: 141ms 479: learn: 0.0066611 total: 1.07s remaining: 138ms 480: learn: 0.0066570 total: 1.07s remaining: 136ms 481: learn: 0.0066569 total: 1.07s remaining: 134ms 482: learn: 0.0066569 total: 1.08s remaining: 131ms 483: learn: 0.0066569 total: 1.08s remaining: 129ms 484: learn: 0.0066560 total: 1.08s remaining: 127ms 485: learn: 0.0066244 total: 1.08s remaining: 125ms 486: learn: 0.0066242 total: 1.08s remaining: 122ms 487: learn: 0.0066232 total: 1.08s remaining: 120ms 488: learn: 0.0066228 total: 1.09s remaining: 118ms 489: learn: 0.0066227 total: 1.09s remaining: 116ms 490: learn: 0.0066227 total: 1.09s remaining: 113ms 491: learn: 0.0066180 total: 1.09s remaining: 111ms 492: learn: 0.0065959 total: 1.09s remaining: 109ms 493: learn: 0.0065959 total: 1.09s remaining: 106ms 494: learn: 0.0065727 total: 1.1s remaining: 104ms 495: learn: 0.0065493 total: 1.1s remaining: 102ms 496: learn: 0.0065274 total: 1.1s remaining: 99.7ms 497: learn: 0.0065085 total: 1.1s remaining: 97.4ms 498: learn: 0.0064874 total: 1.1s remaining: 95.2ms 499: learn: 0.0064669 total: 1.11s remaining: 93ms 500: learn: 0.0064377 total: 1.11s remaining: 90.7ms 501: learn: 0.0064377 total: 1.11s remaining: 88.5ms 502: learn: 0.0064150 total: 1.11s remaining: 86.2ms 503: learn: 0.0063955 total: 1.11s remaining: 84ms 504: learn: 0.0063779 total: 1.11s remaining: 81.8ms 505: learn: 0.0063619 total: 1.12s remaining: 79.5ms 506: learn: 0.0063325 total: 1.12s remaining: 77.3ms 507: learn: 0.0062995 total: 1.12s remaining: 75.1ms 508: learn: 0.0062946 total: 1.12s remaining: 72.8ms 509: learn: 0.0062705 total: 1.13s remaining: 70.6ms 510: learn: 0.0062615 total: 1.13s remaining: 68.4ms 511: learn: 0.0062614 total: 1.13s remaining: 66.1ms 512: learn: 0.0062612 total: 1.13s remaining: 63.9ms 513: learn: 0.0062528 total: 1.13s remaining: 61.6ms 514: learn: 0.0062528 total: 1.13s remaining: 59.4ms 515: learn: 0.0062454 total: 1.13s remaining: 57.2ms 516: learn: 0.0062386 total: 1.14s remaining: 55ms 517: learn: 0.0062379 total: 1.14s remaining: 52.8ms 518: learn: 0.0062254 total: 1.14s remaining: 50.5ms 519: learn: 0.0062150 total: 1.14s remaining: 48.3ms 520: learn: 0.0062150 total: 1.14s remaining: 46.1ms 521: learn: 0.0062149 total: 1.15s remaining: 43.9ms 522: learn: 0.0062148 total: 1.15s remaining: 41.7ms 523: learn: 0.0062147 total: 1.15s remaining: 39.5ms 524: learn: 0.0062146 total: 1.15s remaining: 37.3ms 525: learn: 0.0062145 total: 1.15s remaining: 35.1ms 526: learn: 0.0062135 total: 1.15s remaining: 32.9ms 527: learn: 0.0062073 total: 1.16s remaining: 30.6ms 528: learn: 0.0062072 total: 1.16s remaining: 28.4ms 529: learn: 0.0061955 total: 1.16s remaining: 26.2ms 530: learn: 0.0061954 total: 1.16s remaining: 24ms 531: learn: 0.0061730 total: 1.16s remaining: 21.8ms 532: learn: 0.0061536 total: 1.16s remaining: 19.7ms 533: learn: 0.0061434 total: 1.17s remaining: 17.5ms 534: learn: 0.0061411 total: 1.17s remaining: 15.3ms 535: learn: 0.0061411 total: 1.17s remaining: 13.1ms 536: learn: 0.0061400 total: 1.17s remaining: 10.9ms 537: learn: 0.0061391 total: 1.17s remaining: 8.72ms 538: learn: 0.0061389 total: 1.17s remaining: 6.54ms 539: learn: 0.0061030 total: 1.18s remaining: 4.35ms 540: learn: 0.0061020 total: 1.18s remaining: 2.18ms 541: learn: 0.0061020 total: 1.18s remaining: 0us 0: learn: 0.5480366 total: 2.03ms remaining: 1.1s 1: learn: 0.4624589 total: 4.14ms remaining: 1.12s 2: learn: 0.4017939 total: 6.15ms remaining: 1.1s 3: learn: 0.3609701 total: 7.99ms remaining: 1.07s 4: learn: 0.3266696 total: 9.94ms remaining: 1.07s 5: learn: 0.3079548 total: 11.6ms remaining: 1.04s 6: learn: 0.2943739 total: 13.9ms remaining: 1.06s 7: learn: 0.2786337 total: 15.6ms remaining: 1.04s 8: learn: 0.2653844 total: 17.5ms remaining: 1.04s 9: learn: 0.2561433 total: 19.2ms remaining: 1.02s 10: learn: 0.2421510 total: 20.8ms remaining: 1s 11: learn: 0.2356686 total: 22.3ms remaining: 985ms 12: learn: 0.2258600 total: 24ms remaining: 977ms 13: learn: 0.2193136 total: 25.8ms remaining: 972ms 14: learn: 0.2090478 total: 27.5ms remaining: 965ms 15: learn: 0.1990510 total: 29.3ms remaining: 963ms 16: learn: 0.1938965 total: 31.1ms remaining: 959ms 17: learn: 0.1876548 total: 33.1ms remaining: 962ms 18: learn: 0.1829584 total: 34.7ms remaining: 956ms 19: learn: 0.1796156 total: 36.4ms remaining: 950ms 20: learn: 0.1745745 total: 37.9ms remaining: 941ms 21: learn: 0.1720562 total: 39.5ms remaining: 933ms 22: learn: 0.1710136 total: 41ms remaining: 926ms 23: learn: 0.1666749 total: 42.6ms remaining: 919ms 24: learn: 0.1613101 total: 44.2ms remaining: 913ms 25: learn: 0.1572853 total: 45.8ms remaining: 908ms 26: learn: 0.1528608 total: 47.4ms remaining: 904ms 27: learn: 0.1493365 total: 49ms remaining: 899ms 28: learn: 0.1463798 total: 51ms remaining: 902ms 29: learn: 0.1433626 total: 52.6ms remaining: 897ms 30: learn: 0.1425352 total: 54.2ms remaining: 893ms 31: learn: 0.1385804 total: 55.8ms remaining: 889ms 32: learn: 0.1366617 total: 57.3ms remaining: 884ms 33: learn: 0.1354031 total: 59ms remaining: 882ms 34: learn: 0.1308443 total: 60.7ms remaining: 879ms 35: learn: 0.1271884 total: 62.5ms remaining: 879ms 36: learn: 0.1248429 total: 64.7ms remaining: 883ms 37: learn: 0.1244923 total: 66.7ms remaining: 884ms 38: learn: 0.1206140 total: 68.2ms remaining: 880ms 39: learn: 0.1148401 total: 69.9ms remaining: 877ms 40: learn: 0.1131167 total: 71.6ms remaining: 875ms 41: learn: 0.1119704 total: 73.1ms remaining: 870ms 42: learn: 0.1068329 total: 74.8ms remaining: 868ms 43: learn: 0.1049105 total: 76.3ms remaining: 864ms 44: learn: 0.1039569 total: 77.8ms remaining: 859ms 45: learn: 0.1027078 total: 79.6ms remaining: 858ms 46: learn: 0.0986905 total: 81.2ms remaining: 855ms 47: learn: 0.0980221 total: 83.1ms remaining: 855ms 48: learn: 0.0946121 total: 84.7ms remaining: 852ms 49: learn: 0.0918321 total: 86.2ms remaining: 849ms 50: learn: 0.0893413 total: 88ms remaining: 847ms 51: learn: 0.0870765 total: 89.5ms remaining: 844ms 52: learn: 0.0838528 total: 91.2ms remaining: 841ms 53: learn: 0.0829213 total: 93ms remaining: 841ms 54: learn: 0.0823812 total: 94.9ms remaining: 840ms 55: learn: 0.0810166 total: 96.7ms remaining: 839ms 56: learn: 0.0797774 total: 98.3ms remaining: 836ms 57: learn: 0.0789854 total: 100ms remaining: 834ms 58: learn: 0.0769708 total: 102ms remaining: 833ms 59: learn: 0.0745340 total: 104ms remaining: 834ms 60: learn: 0.0727207 total: 106ms remaining: 835ms 61: learn: 0.0714103 total: 109ms remaining: 842ms 62: learn: 0.0697223 total: 111ms remaining: 847ms 63: learn: 0.0676244 total: 114ms remaining: 848ms 64: learn: 0.0665914 total: 116ms remaining: 848ms 65: learn: 0.0660735 total: 118ms remaining: 848ms 66: learn: 0.0646071 total: 120ms remaining: 850ms 67: learn: 0.0635169 total: 122ms remaining: 850ms 68: learn: 0.0629419 total: 125ms remaining: 856ms 69: learn: 0.0614332 total: 127ms remaining: 857ms 70: learn: 0.0604219 total: 129ms remaining: 856ms 71: learn: 0.0599668 total: 131ms remaining: 855ms 72: learn: 0.0589767 total: 133ms remaining: 855ms 73: learn: 0.0586753 total: 135ms remaining: 856ms 74: learn: 0.0576200 total: 138ms remaining: 857ms 75: learn: 0.0568633 total: 140ms remaining: 856ms 76: learn: 0.0567398 total: 142ms remaining: 856ms 77: learn: 0.0562199 total: 144ms remaining: 854ms 78: learn: 0.0560434 total: 145ms remaining: 851ms 79: learn: 0.0550781 total: 147ms remaining: 849ms 80: learn: 0.0536519 total: 149ms remaining: 847ms 81: learn: 0.0529180 total: 151ms remaining: 846ms 82: learn: 0.0516731 total: 153ms remaining: 844ms 83: learn: 0.0504839 total: 155ms remaining: 846ms 84: learn: 0.0492326 total: 157ms remaining: 846ms 85: learn: 0.0480230 total: 169ms remaining: 893ms 86: learn: 0.0469825 total: 170ms remaining: 892ms 87: learn: 0.0460676 total: 172ms remaining: 888ms 88: learn: 0.0451183 total: 174ms remaining: 885ms 89: learn: 0.0442304 total: 176ms remaining: 883ms 90: learn: 0.0433947 total: 178ms remaining: 881ms 91: learn: 0.0428872 total: 179ms remaining: 877ms 92: learn: 0.0424879 total: 181ms remaining: 876ms 93: learn: 0.0420935 total: 184ms remaining: 876ms 94: learn: 0.0411913 total: 186ms remaining: 876ms 95: learn: 0.0402884 total: 188ms remaining: 874ms 96: learn: 0.0396769 total: 190ms remaining: 873ms 97: learn: 0.0393285 total: 192ms remaining: 870ms 98: learn: 0.0392216 total: 194ms remaining: 868ms 99: learn: 0.0386305 total: 196ms remaining: 867ms 100: learn: 0.0380668 total: 199ms remaining: 867ms 101: learn: 0.0375952 total: 201ms remaining: 867ms 102: learn: 0.0367326 total: 203ms remaining: 864ms 103: learn: 0.0359664 total: 205ms remaining: 862ms 104: learn: 0.0355020 total: 206ms remaining: 859ms 105: learn: 0.0349996 total: 208ms remaining: 857ms 106: learn: 0.0346189 total: 210ms remaining: 855ms 107: learn: 0.0338905 total: 213ms remaining: 854ms 108: learn: 0.0333696 total: 215ms remaining: 853ms 109: learn: 0.0330784 total: 217ms remaining: 851ms 110: learn: 0.0327062 total: 219ms remaining: 850ms 111: learn: 0.0324114 total: 242ms remaining: 928ms 112: learn: 0.0320925 total: 244ms remaining: 925ms 113: learn: 0.0314929 total: 245ms remaining: 921ms 114: learn: 0.0310075 total: 247ms remaining: 918ms 115: learn: 0.0305238 total: 249ms remaining: 914ms 116: learn: 0.0301088 total: 251ms remaining: 910ms 117: learn: 0.0295559 total: 252ms remaining: 907ms 118: learn: 0.0293485 total: 254ms remaining: 904ms 119: learn: 0.0290087 total: 256ms remaining: 902ms 120: learn: 0.0287385 total: 259ms remaining: 901ms 121: learn: 0.0284376 total: 262ms remaining: 901ms 122: learn: 0.0281099 total: 264ms remaining: 899ms 123: learn: 0.0278641 total: 266ms remaining: 897ms 124: learn: 0.0276192 total: 268ms remaining: 895ms 125: learn: 0.0274918 total: 271ms remaining: 894ms 126: learn: 0.0273646 total: 273ms remaining: 892ms 127: learn: 0.0271158 total: 275ms remaining: 889ms 128: learn: 0.0270794 total: 277ms remaining: 887ms 129: learn: 0.0268323 total: 279ms remaining: 885ms 130: learn: 0.0265601 total: 281ms remaining: 882ms 131: learn: 0.0262280 total: 283ms remaining: 879ms 132: learn: 0.0258531 total: 285ms remaining: 878ms 133: learn: 0.0255690 total: 288ms remaining: 878ms 134: learn: 0.0254396 total: 291ms remaining: 876ms 135: learn: 0.0251595 total: 293ms remaining: 874ms 136: learn: 0.0251149 total: 295ms remaining: 873ms 137: learn: 0.0250868 total: 297ms remaining: 871ms 138: learn: 0.0249868 total: 300ms remaining: 869ms 139: learn: 0.0249460 total: 302ms remaining: 867ms 140: learn: 0.0248242 total: 304ms remaining: 864ms 141: learn: 0.0244354 total: 306ms remaining: 862ms 142: learn: 0.0244120 total: 308ms remaining: 859ms 143: learn: 0.0241705 total: 310ms remaining: 857ms 144: learn: 0.0240996 total: 312ms remaining: 854ms 145: learn: 0.0240341 total: 328ms remaining: 889ms 146: learn: 0.0237021 total: 330ms remaining: 886ms 147: learn: 0.0236552 total: 332ms remaining: 883ms 148: learn: 0.0234600 total: 334ms remaining: 880ms 149: learn: 0.0230861 total: 335ms remaining: 876ms 150: learn: 0.0229565 total: 337ms remaining: 872ms 151: learn: 0.0229224 total: 338ms remaining: 868ms 152: learn: 0.0226775 total: 340ms remaining: 864ms 153: learn: 0.0226451 total: 342ms remaining: 861ms 154: learn: 0.0226141 total: 344ms remaining: 858ms 155: learn: 0.0224027 total: 346ms remaining: 856ms 156: learn: 0.0221895 total: 348ms remaining: 853ms 157: learn: 0.0219525 total: 350ms remaining: 850ms 158: learn: 0.0216195 total: 351ms remaining: 847ms 159: learn: 0.0213651 total: 353ms remaining: 843ms 160: learn: 0.0211732 total: 355ms remaining: 840ms 161: learn: 0.0208394 total: 356ms remaining: 836ms 162: learn: 0.0206557 total: 358ms remaining: 833ms 163: learn: 0.0204355 total: 360ms remaining: 829ms 164: learn: 0.0202374 total: 361ms remaining: 826ms 165: learn: 0.0200653 total: 363ms remaining: 822ms 166: learn: 0.0198004 total: 365ms remaining: 819ms 167: learn: 0.0196467 total: 367ms remaining: 816ms 168: learn: 0.0194756 total: 368ms remaining: 812ms 169: learn: 0.0193456 total: 370ms remaining: 809ms 170: learn: 0.0192214 total: 372ms remaining: 806ms 171: learn: 0.0190733 total: 374ms remaining: 804ms 172: learn: 0.0189332 total: 376ms remaining: 801ms 173: learn: 0.0187872 total: 378ms remaining: 799ms 174: learn: 0.0186611 total: 380ms remaining: 796ms 175: learn: 0.0186562 total: 386ms remaining: 804ms 176: learn: 0.0183772 total: 388ms remaining: 800ms 177: learn: 0.0182511 total: 390ms remaining: 798ms 178: learn: 0.0181497 total: 392ms remaining: 794ms 179: learn: 0.0180278 total: 394ms remaining: 791ms 180: learn: 0.0178910 total: 395ms remaining: 788ms 181: learn: 0.0177909 total: 397ms remaining: 785ms 182: learn: 0.0177627 total: 398ms remaining: 782ms 183: learn: 0.0176413 total: 401ms remaining: 779ms 184: learn: 0.0175007 total: 403ms remaining: 777ms 185: learn: 0.0173837 total: 404ms remaining: 774ms 186: learn: 0.0172722 total: 406ms remaining: 771ms 187: learn: 0.0171816 total: 408ms remaining: 768ms 188: learn: 0.0170598 total: 410ms remaining: 765ms 189: learn: 0.0169603 total: 411ms remaining: 762ms 190: learn: 0.0168365 total: 413ms remaining: 759ms 191: learn: 0.0167412 total: 415ms remaining: 757ms 192: learn: 0.0166920 total: 430ms remaining: 778ms 193: learn: 0.0165754 total: 432ms remaining: 775ms 194: learn: 0.0164746 total: 434ms remaining: 772ms 195: learn: 0.0163835 total: 435ms remaining: 768ms 196: learn: 0.0163602 total: 437ms remaining: 765ms 197: learn: 0.0162224 total: 439ms remaining: 762ms 198: learn: 0.0161397 total: 441ms remaining: 760ms 199: learn: 0.0161282 total: 443ms remaining: 757ms 200: learn: 0.0160415 total: 444ms remaining: 754ms 201: learn: 0.0159438 total: 446ms remaining: 751ms 202: learn: 0.0159089 total: 448ms remaining: 748ms 203: learn: 0.0158201 total: 450ms remaining: 745ms 204: learn: 0.0157394 total: 451ms remaining: 741ms 205: learn: 0.0157191 total: 453ms remaining: 738ms 206: learn: 0.0156038 total: 454ms remaining: 735ms 207: learn: 0.0155725 total: 456ms remaining: 732ms 208: learn: 0.0154310 total: 457ms remaining: 728ms 209: learn: 0.0153290 total: 459ms remaining: 725ms 210: learn: 0.0152401 total: 461ms remaining: 723ms 211: learn: 0.0151995 total: 462ms remaining: 720ms 212: learn: 0.0151995 total: 464ms remaining: 716ms 213: learn: 0.0151165 total: 466ms remaining: 714ms 214: learn: 0.0150260 total: 467ms remaining: 711ms 215: learn: 0.0148858 total: 469ms remaining: 708ms 216: learn: 0.0148655 total: 471ms remaining: 705ms 217: learn: 0.0148093 total: 473ms remaining: 703ms 218: learn: 0.0147387 total: 475ms remaining: 701ms 219: learn: 0.0147089 total: 477ms remaining: 698ms 220: learn: 0.0147063 total: 479ms remaining: 695ms 221: learn: 0.0146217 total: 481ms remaining: 693ms 222: learn: 0.0145360 total: 483ms remaining: 691ms 223: learn: 0.0143419 total: 485ms remaining: 688ms 224: learn: 0.0142695 total: 487ms remaining: 686ms 225: learn: 0.0141952 total: 488ms remaining: 683ms 226: learn: 0.0140837 total: 490ms remaining: 680ms 227: learn: 0.0139740 total: 492ms remaining: 677ms 228: learn: 0.0139538 total: 494ms remaining: 675ms 229: learn: 0.0138855 total: 495ms remaining: 672ms 230: learn: 0.0137558 total: 497ms remaining: 669ms 231: learn: 0.0137283 total: 499ms remaining: 667ms 232: learn: 0.0137279 total: 501ms remaining: 665ms 233: learn: 0.0137026 total: 503ms remaining: 662ms 234: learn: 0.0135861 total: 505ms remaining: 660ms 235: learn: 0.0134721 total: 507ms remaining: 657ms 236: learn: 0.0134464 total: 508ms remaining: 654ms 237: learn: 0.0134226 total: 510ms remaining: 652ms 238: learn: 0.0132749 total: 512ms remaining: 649ms 239: learn: 0.0132733 total: 514ms remaining: 646ms 240: learn: 0.0132721 total: 515ms remaining: 644ms 241: learn: 0.0132699 total: 517ms remaining: 641ms 242: learn: 0.0132676 total: 519ms remaining: 638ms 243: learn: 0.0132655 total: 521ms remaining: 636ms 244: learn: 0.0132405 total: 522ms remaining: 633ms 245: learn: 0.0131618 total: 524ms remaining: 631ms 246: learn: 0.0130671 total: 526ms remaining: 628ms 247: learn: 0.0129914 total: 527ms remaining: 625ms 248: learn: 0.0129699 total: 529ms remaining: 623ms 249: learn: 0.0129110 total: 531ms remaining: 621ms 250: learn: 0.0128688 total: 534ms remaining: 619ms 251: learn: 0.0128507 total: 536ms remaining: 616ms 252: learn: 0.0128472 total: 537ms remaining: 614ms 253: learn: 0.0127741 total: 539ms remaining: 611ms 254: learn: 0.0127641 total: 541ms remaining: 609ms 255: learn: 0.0127638 total: 542ms remaining: 606ms 256: learn: 0.0127119 total: 544ms remaining: 604ms 257: learn: 0.0126305 total: 546ms remaining: 601ms 258: learn: 0.0125612 total: 548ms remaining: 599ms 259: learn: 0.0124689 total: 550ms remaining: 597ms 260: learn: 0.0123931 total: 552ms remaining: 594ms 261: learn: 0.0123478 total: 554ms remaining: 592ms 262: learn: 0.0122600 total: 556ms remaining: 590ms 263: learn: 0.0121269 total: 558ms remaining: 588ms 264: learn: 0.0120470 total: 561ms remaining: 586ms 265: learn: 0.0119614 total: 563ms remaining: 584ms 266: learn: 0.0119105 total: 565ms remaining: 582ms 267: learn: 0.0119105 total: 567ms remaining: 579ms 268: learn: 0.0118054 total: 569ms remaining: 577ms 269: learn: 0.0117473 total: 571ms remaining: 575ms 270: learn: 0.0116777 total: 573ms remaining: 573ms 271: learn: 0.0116315 total: 575ms remaining: 571ms 272: learn: 0.0115604 total: 577ms remaining: 569ms 273: learn: 0.0115492 total: 579ms remaining: 566ms 274: learn: 0.0114396 total: 581ms remaining: 564ms 275: learn: 0.0113921 total: 583ms remaining: 562ms 276: learn: 0.0113483 total: 584ms remaining: 559ms 277: learn: 0.0112891 total: 586ms remaining: 557ms 278: learn: 0.0112333 total: 588ms remaining: 554ms 279: learn: 0.0112333 total: 590ms remaining: 552ms 280: learn: 0.0111565 total: 592ms remaining: 550ms 281: learn: 0.0110998 total: 594ms remaining: 547ms 282: learn: 0.0110997 total: 595ms remaining: 545ms 283: learn: 0.0110262 total: 597ms remaining: 542ms 284: learn: 0.0110106 total: 599ms remaining: 540ms 285: learn: 0.0109702 total: 601ms remaining: 538ms 286: learn: 0.0109703 total: 603ms remaining: 535ms 287: learn: 0.0109325 total: 605ms remaining: 533ms 288: learn: 0.0108753 total: 606ms remaining: 531ms 289: learn: 0.0107767 total: 608ms remaining: 528ms 290: learn: 0.0106815 total: 610ms remaining: 526ms 291: learn: 0.0106373 total: 612ms remaining: 524ms 292: learn: 0.0105756 total: 613ms remaining: 521ms 293: learn: 0.0105755 total: 615ms remaining: 518ms 294: learn: 0.0105162 total: 616ms remaining: 516ms 295: learn: 0.0104976 total: 618ms remaining: 514ms 296: learn: 0.0104663 total: 620ms remaining: 512ms 297: learn: 0.0104489 total: 622ms remaining: 509ms 298: learn: 0.0104427 total: 624ms remaining: 507ms 299: learn: 0.0103748 total: 625ms remaining: 505ms 300: learn: 0.0103210 total: 627ms remaining: 502ms 301: learn: 0.0103209 total: 629ms remaining: 500ms 302: learn: 0.0102857 total: 631ms remaining: 497ms 303: learn: 0.0102230 total: 632ms remaining: 495ms 304: learn: 0.0101655 total: 634ms remaining: 493ms 305: learn: 0.0101155 total: 637ms remaining: 491ms 306: learn: 0.0101155 total: 639ms remaining: 489ms 307: learn: 0.0101154 total: 641ms remaining: 487ms 308: learn: 0.0101147 total: 643ms remaining: 485ms 309: learn: 0.0101138 total: 645ms remaining: 482ms 310: learn: 0.0101137 total: 646ms remaining: 480ms 311: learn: 0.0101135 total: 648ms remaining: 478ms 312: learn: 0.0101135 total: 649ms remaining: 475ms 313: learn: 0.0101135 total: 651ms remaining: 472ms 314: learn: 0.0101135 total: 652ms remaining: 470ms 315: learn: 0.0101132 total: 654ms remaining: 468ms 316: learn: 0.0101129 total: 655ms remaining: 465ms 317: learn: 0.0100544 total: 657ms remaining: 463ms 318: learn: 0.0100478 total: 659ms remaining: 460ms 319: learn: 0.0099500 total: 661ms remaining: 458ms 320: learn: 0.0098863 total: 663ms remaining: 456ms 321: learn: 0.0098767 total: 665ms remaining: 454ms 322: learn: 0.0098766 total: 667ms remaining: 452ms 323: learn: 0.0098329 total: 670ms remaining: 451ms 324: learn: 0.0097969 total: 672ms remaining: 448ms 325: learn: 0.0097970 total: 674ms remaining: 446ms 326: learn: 0.0097561 total: 676ms remaining: 444ms 327: learn: 0.0097013 total: 678ms remaining: 442ms 328: learn: 0.0096637 total: 680ms remaining: 440ms 329: learn: 0.0095992 total: 681ms remaining: 438ms 330: learn: 0.0095516 total: 683ms remaining: 436ms 331: learn: 0.0095198 total: 685ms remaining: 433ms 332: learn: 0.0094736 total: 687ms remaining: 431ms 333: learn: 0.0094453 total: 689ms remaining: 429ms 334: learn: 0.0094129 total: 691ms remaining: 427ms 335: learn: 0.0093615 total: 693ms remaining: 425ms 336: learn: 0.0093141 total: 695ms remaining: 423ms 337: learn: 0.0092827 total: 697ms remaining: 421ms 338: learn: 0.0092410 total: 699ms remaining: 418ms 339: learn: 0.0092410 total: 700ms remaining: 416ms 340: learn: 0.0092099 total: 703ms remaining: 414ms 341: learn: 0.0091805 total: 705ms remaining: 412ms 342: learn: 0.0091495 total: 707ms remaining: 410ms 343: learn: 0.0091037 total: 709ms remaining: 408ms 344: learn: 0.0090757 total: 710ms remaining: 406ms 345: learn: 0.0090448 total: 712ms remaining: 403ms 346: learn: 0.0089725 total: 713ms remaining: 401ms 347: learn: 0.0089726 total: 715ms remaining: 398ms 348: learn: 0.0088980 total: 717ms remaining: 396ms 349: learn: 0.0088676 total: 719ms remaining: 394ms 350: learn: 0.0088262 total: 720ms remaining: 392ms 351: learn: 0.0088262 total: 722ms remaining: 390ms 352: learn: 0.0088100 total: 724ms remaining: 388ms 353: learn: 0.0087728 total: 726ms remaining: 386ms 354: learn: 0.0087728 total: 728ms remaining: 383ms 355: learn: 0.0087266 total: 729ms remaining: 381ms 356: learn: 0.0087213 total: 731ms remaining: 379ms 357: learn: 0.0087209 total: 733ms remaining: 377ms 358: learn: 0.0086954 total: 735ms remaining: 375ms 359: learn: 0.0086643 total: 737ms remaining: 372ms 360: learn: 0.0086296 total: 739ms remaining: 370ms 361: learn: 0.0086296 total: 740ms remaining: 368ms 362: learn: 0.0086010 total: 742ms remaining: 366ms 363: learn: 0.0085593 total: 744ms remaining: 364ms 364: learn: 0.0085323 total: 745ms remaining: 361ms 365: learn: 0.0084940 total: 748ms remaining: 360ms 366: learn: 0.0084579 total: 750ms remaining: 358ms 367: learn: 0.0084338 total: 752ms remaining: 355ms 368: learn: 0.0083976 total: 754ms remaining: 353ms 369: learn: 0.0083525 total: 756ms remaining: 352ms 370: learn: 0.0083525 total: 758ms remaining: 349ms 371: learn: 0.0083229 total: 760ms remaining: 347ms 372: learn: 0.0083228 total: 762ms remaining: 345ms 373: learn: 0.0082827 total: 764ms remaining: 343ms 374: learn: 0.0082565 total: 767ms remaining: 341ms 375: learn: 0.0082211 total: 769ms remaining: 339ms 376: learn: 0.0082068 total: 771ms remaining: 337ms 377: learn: 0.0081862 total: 772ms remaining: 335ms 378: learn: 0.0081861 total: 774ms remaining: 333ms 379: learn: 0.0081581 total: 776ms remaining: 331ms 380: learn: 0.0081564 total: 778ms remaining: 329ms 381: learn: 0.0081312 total: 780ms remaining: 326ms 382: learn: 0.0081290 total: 781ms remaining: 324ms 383: learn: 0.0081290 total: 783ms remaining: 322ms 384: learn: 0.0081290 total: 785ms remaining: 320ms 385: learn: 0.0081289 total: 786ms remaining: 318ms 386: learn: 0.0081290 total: 788ms remaining: 316ms 387: learn: 0.0081289 total: 789ms remaining: 313ms 388: learn: 0.0081289 total: 791ms remaining: 311ms 389: learn: 0.0081289 total: 792ms remaining: 309ms 390: learn: 0.0081286 total: 794ms remaining: 307ms 391: learn: 0.0081285 total: 795ms remaining: 304ms 392: learn: 0.0081284 total: 797ms remaining: 302ms 393: learn: 0.0081283 total: 799ms remaining: 300ms 394: learn: 0.0081283 total: 800ms remaining: 298ms 395: learn: 0.0081281 total: 802ms remaining: 296ms 396: learn: 0.0081280 total: 804ms remaining: 294ms 397: learn: 0.0081278 total: 806ms remaining: 292ms 398: learn: 0.0081278 total: 807ms remaining: 289ms 399: learn: 0.0081278 total: 809ms remaining: 287ms 400: learn: 0.0081275 total: 811ms remaining: 285ms 401: learn: 0.0081275 total: 813ms remaining: 283ms 402: learn: 0.0081272 total: 815ms remaining: 281ms 403: learn: 0.0081255 total: 818ms remaining: 279ms 404: learn: 0.0081232 total: 820ms remaining: 277ms 405: learn: 0.0081205 total: 822ms remaining: 275ms 406: learn: 0.0081181 total: 825ms remaining: 274ms 407: learn: 0.0081180 total: 826ms remaining: 271ms 408: learn: 0.0081156 total: 828ms remaining: 269ms 409: learn: 0.0081154 total: 830ms remaining: 267ms 410: learn: 0.0081140 total: 832ms remaining: 265ms 411: learn: 0.0080879 total: 834ms remaining: 263ms 412: learn: 0.0080879 total: 835ms remaining: 261ms 413: learn: 0.0080866 total: 837ms remaining: 259ms 414: learn: 0.0080840 total: 838ms remaining: 257ms 415: learn: 0.0080594 total: 840ms remaining: 254ms 416: learn: 0.0080549 total: 842ms remaining: 252ms 417: learn: 0.0080327 total: 844ms remaining: 250ms 418: learn: 0.0080325 total: 846ms remaining: 248ms 419: learn: 0.0080050 total: 848ms remaining: 246ms 420: learn: 0.0080050 total: 849ms remaining: 244ms 421: learn: 0.0079661 total: 851ms remaining: 242ms 422: learn: 0.0079644 total: 853ms remaining: 240ms 423: learn: 0.0079273 total: 876ms remaining: 244ms 424: learn: 0.0078908 total: 878ms remaining: 242ms 425: learn: 0.0078614 total: 880ms remaining: 240ms 426: learn: 0.0078614 total: 881ms remaining: 237ms 427: learn: 0.0078392 total: 883ms remaining: 235ms 428: learn: 0.0078042 total: 885ms remaining: 233ms 429: learn: 0.0077721 total: 886ms remaining: 231ms 430: learn: 0.0077306 total: 888ms remaining: 229ms 431: learn: 0.0077062 total: 890ms remaining: 227ms 432: learn: 0.0077062 total: 891ms remaining: 224ms 433: learn: 0.0076842 total: 893ms remaining: 222ms 434: learn: 0.0076610 total: 895ms remaining: 220ms 435: learn: 0.0076373 total: 896ms remaining: 218ms 436: learn: 0.0076108 total: 898ms remaining: 216ms 437: learn: 0.0075863 total: 900ms remaining: 214ms 438: learn: 0.0075863 total: 901ms remaining: 211ms 439: learn: 0.0075590 total: 903ms remaining: 209ms 440: learn: 0.0075553 total: 906ms remaining: 207ms 441: learn: 0.0075256 total: 908ms remaining: 205ms 442: learn: 0.0075041 total: 910ms remaining: 203ms 443: learn: 0.0074742 total: 912ms remaining: 201ms 444: learn: 0.0074497 total: 914ms remaining: 199ms 445: learn: 0.0074321 total: 918ms remaining: 198ms 446: learn: 0.0073835 total: 920ms remaining: 196ms 447: learn: 0.0073630 total: 922ms remaining: 193ms 448: learn: 0.0073426 total: 924ms remaining: 191ms 449: learn: 0.0073426 total: 925ms remaining: 189ms 450: learn: 0.0073111 total: 927ms remaining: 187ms 451: learn: 0.0072952 total: 929ms remaining: 185ms 452: learn: 0.0072698 total: 931ms remaining: 183ms 453: learn: 0.0072317 total: 932ms remaining: 181ms 454: learn: 0.0072032 total: 935ms remaining: 179ms 455: learn: 0.0071686 total: 936ms remaining: 177ms 456: learn: 0.0071478 total: 938ms remaining: 175ms 457: learn: 0.0071478 total: 940ms remaining: 172ms 458: learn: 0.0071023 total: 942ms remaining: 170ms 459: learn: 0.0070819 total: 943ms remaining: 168ms 460: learn: 0.0070646 total: 945ms remaining: 166ms 461: learn: 0.0070647 total: 947ms remaining: 164ms 462: learn: 0.0070442 total: 949ms remaining: 162ms 463: learn: 0.0070201 total: 951ms remaining: 160ms 464: learn: 0.0069911 total: 953ms remaining: 158ms 465: learn: 0.0069578 total: 955ms remaining: 156ms 466: learn: 0.0069376 total: 956ms remaining: 154ms 467: learn: 0.0068997 total: 958ms remaining: 152ms 468: learn: 0.0068601 total: 960ms remaining: 149ms 469: learn: 0.0068430 total: 962ms remaining: 147ms 470: learn: 0.0068255 total: 963ms remaining: 145ms 471: learn: 0.0068086 total: 965ms remaining: 143ms 472: learn: 0.0067851 total: 967ms remaining: 141ms 473: learn: 0.0067682 total: 969ms remaining: 139ms 474: learn: 0.0067519 total: 970ms remaining: 137ms 475: learn: 0.0067348 total: 972ms remaining: 135ms 476: learn: 0.0067139 total: 974ms remaining: 133ms 477: learn: 0.0066855 total: 976ms remaining: 131ms 478: learn: 0.0066848 total: 977ms remaining: 129ms 479: learn: 0.0066681 total: 979ms remaining: 126ms 480: learn: 0.0066533 total: 980ms remaining: 124ms 481: learn: 0.0066351 total: 982ms remaining: 122ms 482: learn: 0.0066080 total: 984ms remaining: 120ms 483: learn: 0.0065904 total: 986ms remaining: 118ms 484: learn: 0.0065664 total: 987ms remaining: 116ms 485: learn: 0.0065645 total: 989ms remaining: 114ms 486: learn: 0.0065641 total: 991ms remaining: 112ms 487: learn: 0.0065414 total: 992ms remaining: 110ms 488: learn: 0.0065127 total: 994ms remaining: 108ms 489: learn: 0.0064996 total: 996ms remaining: 106ms 490: learn: 0.0064992 total: 997ms remaining: 104ms 491: learn: 0.0064779 total: 999ms remaining: 101ms 492: learn: 0.0064759 total: 1s remaining: 99.4ms 493: learn: 0.0064756 total: 1s remaining: 97.3ms 494: learn: 0.0064356 total: 1s remaining: 95.3ms 495: learn: 0.0064160 total: 1.01s remaining: 93.3ms 496: learn: 0.0063866 total: 1.01s remaining: 91.3ms 497: learn: 0.0063542 total: 1.01s remaining: 89.3ms 498: learn: 0.0063346 total: 1.01s remaining: 87.3ms 499: learn: 0.0063099 total: 1.01s remaining: 85.3ms 500: learn: 0.0062857 total: 1.02s remaining: 83.2ms 501: learn: 0.0062609 total: 1.02s remaining: 81.2ms 502: learn: 0.0062345 total: 1.02s remaining: 79.2ms 503: learn: 0.0062060 total: 1.02s remaining: 77.2ms 504: learn: 0.0061885 total: 1.02s remaining: 75.1ms 505: learn: 0.0061641 total: 1.03s remaining: 73.1ms 506: learn: 0.0061437 total: 1.03s remaining: 71ms 507: learn: 0.0061216 total: 1.03s remaining: 69ms 508: learn: 0.0060896 total: 1.03s remaining: 66.9ms 509: learn: 0.0060767 total: 1.03s remaining: 64.9ms 510: learn: 0.0060621 total: 1.03s remaining: 62.8ms 511: learn: 0.0060328 total: 1.04s remaining: 60.8ms 512: learn: 0.0060139 total: 1.04s remaining: 58.8ms 513: learn: 0.0060002 total: 1.04s remaining: 56.8ms 514: learn: 0.0059797 total: 1.04s remaining: 54.7ms 515: learn: 0.0059603 total: 1.04s remaining: 52.7ms 516: learn: 0.0059472 total: 1.05s remaining: 50.7ms 517: learn: 0.0059225 total: 1.05s remaining: 48.6ms 518: learn: 0.0059050 total: 1.05s remaining: 46.6ms 519: learn: 0.0058916 total: 1.05s remaining: 44.5ms 520: learn: 0.0058733 total: 1.05s remaining: 42.5ms 521: learn: 0.0058526 total: 1.06s remaining: 40.5ms 522: learn: 0.0058342 total: 1.06s remaining: 38.4ms 523: learn: 0.0058079 total: 1.06s remaining: 36.4ms 524: learn: 0.0057927 total: 1.06s remaining: 34.4ms 525: learn: 0.0057762 total: 1.06s remaining: 32.4ms 526: learn: 0.0057654 total: 1.06s remaining: 30.3ms 527: learn: 0.0057526 total: 1.07s remaining: 28.3ms 528: learn: 0.0057450 total: 1.07s remaining: 26.3ms 529: learn: 0.0057325 total: 1.07s remaining: 24.2ms 530: learn: 0.0057165 total: 1.07s remaining: 22.2ms 531: learn: 0.0057125 total: 1.07s remaining: 20.2ms 532: learn: 0.0056983 total: 1.08s remaining: 18.2ms 533: learn: 0.0056701 total: 1.08s remaining: 16.2ms 534: learn: 0.0056508 total: 1.08s remaining: 14.1ms 535: learn: 0.0056508 total: 1.08s remaining: 12.1ms 536: learn: 0.0056386 total: 1.08s remaining: 10.1ms 537: learn: 0.0056259 total: 1.08s remaining: 8.07ms 538: learn: 0.0056258 total: 1.09s remaining: 6.05ms 539: learn: 0.0056067 total: 1.09s remaining: 4.03ms 540: learn: 0.0055955 total: 1.09s remaining: 2.02ms 541: learn: 0.0055776 total: 1.09s remaining: 0us 0: learn: 0.5491296 total: 1.78ms remaining: 963ms 1: learn: 0.4718966 total: 3.03ms remaining: 819ms 2: learn: 0.4277265 total: 4.27ms remaining: 768ms 3: learn: 0.3757354 total: 5.9ms remaining: 794ms 4: learn: 0.3523291 total: 7.54ms remaining: 810ms 5: learn: 0.3294068 total: 9.26ms remaining: 827ms 6: learn: 0.3109888 total: 11ms remaining: 844ms 7: learn: 0.2969470 total: 12.8ms remaining: 858ms 8: learn: 0.2855056 total: 14.9ms remaining: 880ms 9: learn: 0.2739108 total: 16.5ms remaining: 877ms 10: learn: 0.2632521 total: 18.3ms remaining: 882ms 11: learn: 0.2514177 total: 20.1ms remaining: 888ms 12: learn: 0.2416608 total: 22ms remaining: 894ms 13: learn: 0.2232928 total: 23.8ms remaining: 897ms 14: learn: 0.2114778 total: 25.5ms remaining: 895ms 15: learn: 0.2058737 total: 27.4ms remaining: 900ms 16: learn: 0.2032343 total: 29.1ms remaining: 899ms 17: learn: 0.1938427 total: 30.7ms remaining: 895ms 18: learn: 0.1912491 total: 32.2ms remaining: 887ms 19: learn: 0.1866117 total: 33.7ms remaining: 880ms 20: learn: 0.1812460 total: 35.2ms remaining: 874ms 21: learn: 0.1759068 total: 36.7ms remaining: 867ms 22: learn: 0.1710826 total: 38.4ms remaining: 865ms 23: learn: 0.1689753 total: 40.2ms remaining: 867ms 24: learn: 0.1617038 total: 42.1ms remaining: 870ms 25: learn: 0.1574261 total: 44ms remaining: 872ms 26: learn: 0.1517412 total: 45.7ms remaining: 872ms 27: learn: 0.1449188 total: 47.4ms remaining: 870ms 28: learn: 0.1430510 total: 49ms remaining: 866ms 29: learn: 0.1369434 total: 50.5ms remaining: 862ms 30: learn: 0.1321353 total: 52ms remaining: 858ms 31: learn: 0.1278856 total: 53.5ms remaining: 853ms 32: learn: 0.1249358 total: 55ms remaining: 848ms 33: learn: 0.1225726 total: 56.7ms remaining: 847ms 34: learn: 0.1158340 total: 58.4ms remaining: 845ms 35: learn: 0.1112553 total: 59.9ms remaining: 841ms 36: learn: 0.1072678 total: 61.6ms remaining: 840ms 37: learn: 0.1058622 total: 63.1ms remaining: 837ms 38: learn: 0.1044869 total: 64.7ms remaining: 834ms 39: learn: 0.1011011 total: 66.2ms remaining: 831ms 40: learn: 0.0987301 total: 67.7ms remaining: 827ms 41: learn: 0.0954259 total: 69.3ms remaining: 826ms 42: learn: 0.0930467 total: 71ms remaining: 824ms 43: learn: 0.0914304 total: 72.8ms remaining: 823ms 44: learn: 0.0900781 total: 74.5ms remaining: 823ms 45: learn: 0.0863013 total: 76.5ms remaining: 825ms 46: learn: 0.0839285 total: 78.3ms remaining: 824ms 47: learn: 0.0806086 total: 79.8ms remaining: 822ms 48: learn: 0.0804716 total: 81.5ms remaining: 820ms 49: learn: 0.0783101 total: 83.3ms remaining: 819ms 50: learn: 0.0764151 total: 84.9ms remaining: 818ms 51: learn: 0.0747964 total: 86.6ms remaining: 816ms 52: learn: 0.0739089 total: 88.2ms remaining: 813ms 53: learn: 0.0738369 total: 89.7ms remaining: 811ms 54: learn: 0.0737663 total: 91.2ms remaining: 808ms 55: learn: 0.0736972 total: 92.8ms remaining: 806ms 56: learn: 0.0736866 total: 94.4ms remaining: 803ms 57: learn: 0.0714761 total: 96ms remaining: 801ms 58: learn: 0.0699014 total: 97.6ms remaining: 799ms 59: learn: 0.0681233 total: 99.1ms remaining: 796ms 60: learn: 0.0675716 total: 101ms remaining: 793ms 61: learn: 0.0662414 total: 102ms remaining: 792ms 62: learn: 0.0646889 total: 104ms remaining: 791ms 63: learn: 0.0631065 total: 106ms remaining: 790ms 64: learn: 0.0614332 total: 108ms remaining: 789ms 65: learn: 0.0601261 total: 109ms remaining: 787ms 66: learn: 0.0584377 total: 111ms remaining: 785ms 67: learn: 0.0573741 total: 112ms remaining: 784ms 68: learn: 0.0561980 total: 114ms remaining: 783ms 69: learn: 0.0549546 total: 116ms remaining: 782ms 70: learn: 0.0541912 total: 118ms remaining: 781ms 71: learn: 0.0531598 total: 119ms remaining: 780ms 72: learn: 0.0523873 total: 121ms remaining: 778ms 73: learn: 0.0511087 total: 123ms remaining: 776ms 74: learn: 0.0503143 total: 124ms remaining: 774ms 75: learn: 0.0495188 total: 126ms remaining: 771ms 76: learn: 0.0482214 total: 127ms remaining: 770ms 77: learn: 0.0475127 total: 129ms remaining: 768ms 78: learn: 0.0461248 total: 131ms remaining: 767ms 79: learn: 0.0457594 total: 133ms remaining: 769ms 80: learn: 0.0449370 total: 135ms remaining: 770ms 81: learn: 0.0447241 total: 137ms remaining: 768ms 82: learn: 0.0441965 total: 138ms remaining: 765ms 83: learn: 0.0441802 total: 140ms remaining: 763ms 84: learn: 0.0441522 total: 142ms remaining: 761ms 85: learn: 0.0441029 total: 143ms remaining: 759ms 86: learn: 0.0440698 total: 145ms remaining: 756ms 87: learn: 0.0438445 total: 146ms remaining: 753ms 88: learn: 0.0433479 total: 147ms remaining: 750ms 89: learn: 0.0425036 total: 149ms remaining: 748ms 90: learn: 0.0418176 total: 150ms remaining: 746ms 91: learn: 0.0414842 total: 152ms remaining: 743ms 92: learn: 0.0412886 total: 154ms remaining: 741ms 93: learn: 0.0406746 total: 155ms remaining: 739ms 94: learn: 0.0405632 total: 156ms remaining: 736ms 95: learn: 0.0401024 total: 158ms remaining: 734ms 96: learn: 0.0392080 total: 160ms remaining: 733ms 97: learn: 0.0385334 total: 161ms remaining: 731ms 98: learn: 0.0376887 total: 163ms remaining: 730ms 99: learn: 0.0372233 total: 165ms remaining: 729ms 100: learn: 0.0363925 total: 166ms remaining: 727ms 101: learn: 0.0357488 total: 168ms remaining: 725ms 102: learn: 0.0352021 total: 170ms remaining: 723ms 103: learn: 0.0350048 total: 172ms remaining: 723ms 104: learn: 0.0350048 total: 173ms remaining: 722ms 105: learn: 0.0349909 total: 175ms remaining: 721ms 106: learn: 0.0349884 total: 177ms remaining: 720ms 107: learn: 0.0349851 total: 179ms remaining: 720ms 108: learn: 0.0349825 total: 195ms remaining: 774ms 109: learn: 0.0349823 total: 197ms remaining: 773ms 110: learn: 0.0349811 total: 209ms remaining: 811ms 111: learn: 0.0344611 total: 210ms remaining: 808ms 112: learn: 0.0339228 total: 212ms remaining: 806ms 113: learn: 0.0333924 total: 214ms remaining: 803ms 114: learn: 0.0327784 total: 216ms remaining: 801ms 115: learn: 0.0325210 total: 217ms remaining: 798ms 116: learn: 0.0318409 total: 219ms remaining: 796ms 117: learn: 0.0315260 total: 221ms remaining: 794ms 118: learn: 0.0309106 total: 223ms remaining: 793ms 119: learn: 0.0303228 total: 225ms remaining: 791ms 120: learn: 0.0299666 total: 227ms remaining: 789ms 121: learn: 0.0299617 total: 229ms remaining: 788ms 122: learn: 0.0296251 total: 231ms remaining: 786ms 123: learn: 0.0292317 total: 233ms remaining: 784ms 124: learn: 0.0289466 total: 234ms remaining: 782ms 125: learn: 0.0283691 total: 236ms remaining: 780ms 126: learn: 0.0280975 total: 238ms remaining: 778ms 127: learn: 0.0276608 total: 240ms remaining: 776ms 128: learn: 0.0274120 total: 242ms remaining: 773ms 129: learn: 0.0272391 total: 243ms remaining: 771ms 130: learn: 0.0268395 total: 245ms remaining: 768ms 131: learn: 0.0268395 total: 246ms remaining: 765ms 132: learn: 0.0264406 total: 254ms remaining: 780ms 133: learn: 0.0260860 total: 256ms remaining: 780ms 134: learn: 0.0257333 total: 260ms remaining: 783ms 135: learn: 0.0256117 total: 262ms remaining: 783ms 136: learn: 0.0254458 total: 265ms remaining: 783ms 137: learn: 0.0251387 total: 300ms remaining: 879ms 138: learn: 0.0249568 total: 302ms remaining: 876ms 139: learn: 0.0249569 total: 304ms remaining: 872ms 140: learn: 0.0249568 total: 306ms remaining: 869ms 141: learn: 0.0249560 total: 307ms remaining: 866ms 142: learn: 0.0249559 total: 309ms remaining: 863ms 143: learn: 0.0249559 total: 311ms remaining: 861ms 144: learn: 0.0249551 total: 313ms remaining: 858ms 145: learn: 0.0249544 total: 315ms remaining: 855ms 146: learn: 0.0249537 total: 317ms remaining: 852ms 147: learn: 0.0249533 total: 319ms remaining: 850ms 148: learn: 0.0249529 total: 321ms remaining: 846ms 149: learn: 0.0249524 total: 323ms remaining: 843ms 150: learn: 0.0249524 total: 325ms remaining: 841ms 151: learn: 0.0249520 total: 327ms remaining: 838ms 152: learn: 0.0249518 total: 329ms remaining: 835ms 153: learn: 0.0249517 total: 341ms remaining: 860ms 154: learn: 0.0249516 total: 343ms remaining: 856ms 155: learn: 0.0249508 total: 345ms remaining: 852ms 156: learn: 0.0249491 total: 346ms remaining: 849ms 157: learn: 0.0249366 total: 348ms remaining: 845ms 158: learn: 0.0249357 total: 350ms remaining: 842ms 159: learn: 0.0249345 total: 351ms remaining: 839ms 160: learn: 0.0249345 total: 353ms remaining: 835ms 161: learn: 0.0249339 total: 354ms remaining: 831ms 162: learn: 0.0249336 total: 356ms remaining: 828ms 163: learn: 0.0249332 total: 357ms remaining: 824ms 164: learn: 0.0246075 total: 359ms remaining: 821ms 165: learn: 0.0241036 total: 361ms remaining: 818ms 166: learn: 0.0238748 total: 363ms remaining: 815ms 167: learn: 0.0237486 total: 365ms remaining: 813ms 168: learn: 0.0234308 total: 367ms remaining: 810ms 169: learn: 0.0231472 total: 372ms remaining: 813ms 170: learn: 0.0231379 total: 373ms remaining: 810ms 171: learn: 0.0231209 total: 375ms remaining: 807ms 172: learn: 0.0228700 total: 377ms remaining: 804ms 173: learn: 0.0227649 total: 378ms remaining: 800ms 174: learn: 0.0227507 total: 380ms remaining: 797ms 175: learn: 0.0227374 total: 381ms remaining: 793ms 176: learn: 0.0225011 total: 383ms remaining: 790ms 177: learn: 0.0222889 total: 385ms remaining: 787ms 178: learn: 0.0222704 total: 387ms remaining: 785ms 179: learn: 0.0219761 total: 389ms remaining: 782ms 180: learn: 0.0219610 total: 390ms remaining: 779ms 181: learn: 0.0219462 total: 392ms remaining: 776ms 182: learn: 0.0216641 total: 394ms remaining: 773ms 183: learn: 0.0216140 total: 396ms remaining: 770ms 184: learn: 0.0214181 total: 397ms remaining: 767ms 185: learn: 0.0214063 total: 400ms remaining: 765ms 186: learn: 0.0213933 total: 401ms remaining: 762ms 187: learn: 0.0213838 total: 403ms remaining: 759ms 188: learn: 0.0213420 total: 405ms remaining: 756ms 189: learn: 0.0210818 total: 407ms remaining: 754ms 190: learn: 0.0208486 total: 409ms remaining: 751ms 191: learn: 0.0206905 total: 410ms remaining: 748ms 192: learn: 0.0205355 total: 412ms remaining: 745ms 193: learn: 0.0204576 total: 414ms remaining: 742ms 194: learn: 0.0201879 total: 415ms remaining: 739ms 195: learn: 0.0199678 total: 417ms remaining: 736ms 196: learn: 0.0197145 total: 419ms remaining: 733ms 197: learn: 0.0196598 total: 420ms remaining: 730ms 198: learn: 0.0194725 total: 422ms remaining: 728ms 199: learn: 0.0193269 total: 424ms remaining: 725ms 200: learn: 0.0193107 total: 426ms remaining: 722ms 201: learn: 0.0190801 total: 427ms remaining: 719ms 202: learn: 0.0188806 total: 429ms remaining: 716ms 203: learn: 0.0188049 total: 431ms remaining: 713ms 204: learn: 0.0186403 total: 432ms remaining: 710ms 205: learn: 0.0184807 total: 434ms remaining: 708ms 206: learn: 0.0183060 total: 436ms remaining: 705ms 207: learn: 0.0182445 total: 437ms remaining: 702ms 208: learn: 0.0182360 total: 439ms remaining: 699ms 209: learn: 0.0182294 total: 440ms remaining: 696ms 210: learn: 0.0180758 total: 442ms remaining: 693ms 211: learn: 0.0179094 total: 443ms remaining: 690ms 212: learn: 0.0177155 total: 445ms remaining: 688ms 213: learn: 0.0177078 total: 447ms remaining: 685ms 214: learn: 0.0176991 total: 448ms remaining: 682ms 215: learn: 0.0175563 total: 450ms remaining: 680ms 216: learn: 0.0174377 total: 452ms remaining: 677ms 217: learn: 0.0174224 total: 454ms remaining: 675ms 218: learn: 0.0174225 total: 456ms remaining: 672ms 219: learn: 0.0174170 total: 458ms remaining: 670ms 220: learn: 0.0174091 total: 460ms remaining: 668ms 221: learn: 0.0172580 total: 462ms remaining: 665ms 222: learn: 0.0170730 total: 464ms remaining: 663ms 223: learn: 0.0170029 total: 466ms remaining: 661ms 224: learn: 0.0169036 total: 467ms remaining: 658ms 225: learn: 0.0167755 total: 469ms remaining: 656ms 226: learn: 0.0167707 total: 471ms remaining: 653ms 227: learn: 0.0166059 total: 472ms remaining: 651ms 228: learn: 0.0165699 total: 474ms remaining: 648ms 229: learn: 0.0164422 total: 476ms remaining: 645ms 230: learn: 0.0163482 total: 478ms remaining: 643ms 231: learn: 0.0161530 total: 479ms remaining: 640ms 232: learn: 0.0161311 total: 481ms remaining: 638ms 233: learn: 0.0159983 total: 483ms remaining: 635ms 234: learn: 0.0158391 total: 484ms remaining: 633ms 235: learn: 0.0157259 total: 486ms remaining: 630ms 236: learn: 0.0157175 total: 488ms remaining: 628ms 237: learn: 0.0155926 total: 490ms remaining: 625ms 238: learn: 0.0155099 total: 491ms remaining: 623ms 239: learn: 0.0154292 total: 493ms remaining: 620ms 240: learn: 0.0153671 total: 495ms remaining: 618ms 241: learn: 0.0153672 total: 496ms remaining: 615ms 242: learn: 0.0153648 total: 498ms remaining: 613ms 243: learn: 0.0153620 total: 499ms remaining: 610ms 244: learn: 0.0152467 total: 501ms remaining: 607ms 245: learn: 0.0151287 total: 503ms remaining: 605ms 246: learn: 0.0150424 total: 504ms remaining: 602ms 247: learn: 0.0149047 total: 506ms remaining: 600ms 248: learn: 0.0148030 total: 508ms remaining: 597ms 249: learn: 0.0147018 total: 509ms remaining: 595ms 250: learn: 0.0146728 total: 511ms remaining: 593ms 251: learn: 0.0145546 total: 514ms remaining: 591ms 252: learn: 0.0145108 total: 516ms remaining: 589ms 253: learn: 0.0144472 total: 518ms remaining: 587ms 254: learn: 0.0144129 total: 520ms remaining: 585ms 255: learn: 0.0143812 total: 522ms remaining: 583ms 256: learn: 0.0142305 total: 523ms remaining: 580ms 257: learn: 0.0142285 total: 525ms remaining: 578ms 258: learn: 0.0142284 total: 526ms remaining: 575ms 259: learn: 0.0142263 total: 528ms remaining: 573ms 260: learn: 0.0141949 total: 530ms remaining: 570ms 261: learn: 0.0141501 total: 532ms remaining: 568ms 262: learn: 0.0141471 total: 533ms remaining: 566ms 263: learn: 0.0141446 total: 535ms remaining: 563ms 264: learn: 0.0141424 total: 537ms remaining: 561ms 265: learn: 0.0140679 total: 538ms remaining: 559ms 266: learn: 0.0140048 total: 540ms remaining: 556ms 267: learn: 0.0139781 total: 542ms remaining: 554ms 268: learn: 0.0138651 total: 544ms remaining: 552ms 269: learn: 0.0137599 total: 546ms remaining: 550ms 270: learn: 0.0136736 total: 548ms remaining: 548ms 271: learn: 0.0135674 total: 550ms remaining: 546ms 272: learn: 0.0135407 total: 552ms remaining: 544ms 273: learn: 0.0134608 total: 554ms remaining: 542ms 274: learn: 0.0133565 total: 557ms remaining: 540ms 275: learn: 0.0132149 total: 559ms remaining: 538ms 276: learn: 0.0132137 total: 561ms remaining: 536ms 277: learn: 0.0132066 total: 562ms remaining: 534ms 278: learn: 0.0132066 total: 564ms remaining: 531ms 279: learn: 0.0132066 total: 565ms remaining: 529ms 280: learn: 0.0132065 total: 567ms remaining: 526ms 281: learn: 0.0132065 total: 568ms remaining: 524ms 282: learn: 0.0132064 total: 570ms remaining: 521ms 283: learn: 0.0132065 total: 571ms remaining: 519ms 284: learn: 0.0132065 total: 573ms remaining: 516ms 285: learn: 0.0132065 total: 574ms remaining: 514ms 286: learn: 0.0132064 total: 576ms remaining: 512ms 287: learn: 0.0132063 total: 577ms remaining: 509ms 288: learn: 0.0132063 total: 579ms remaining: 507ms 289: learn: 0.0132061 total: 581ms remaining: 505ms 290: learn: 0.0132061 total: 582ms remaining: 502ms 291: learn: 0.0132061 total: 583ms remaining: 500ms 292: learn: 0.0131138 total: 585ms remaining: 497ms 293: learn: 0.0130384 total: 587ms remaining: 495ms 294: learn: 0.0129699 total: 588ms remaining: 493ms 295: learn: 0.0128648 total: 590ms remaining: 490ms 296: learn: 0.0128648 total: 591ms remaining: 488ms 297: learn: 0.0127802 total: 593ms remaining: 486ms 298: learn: 0.0127786 total: 595ms remaining: 483ms 299: learn: 0.0127776 total: 596ms remaining: 481ms 300: learn: 0.0127774 total: 598ms remaining: 479ms 301: learn: 0.0127774 total: 600ms remaining: 476ms 302: learn: 0.0127774 total: 602ms remaining: 475ms 303: learn: 0.0127773 total: 604ms remaining: 472ms 304: learn: 0.0127773 total: 605ms remaining: 470ms 305: learn: 0.0127773 total: 607ms remaining: 468ms 306: learn: 0.0127771 total: 609ms remaining: 466ms 307: learn: 0.0127772 total: 610ms remaining: 464ms 308: learn: 0.0127769 total: 612ms remaining: 462ms 309: learn: 0.0127769 total: 614ms remaining: 459ms 310: learn: 0.0127770 total: 616ms remaining: 457ms 311: learn: 0.0127769 total: 617ms remaining: 455ms 312: learn: 0.0127768 total: 619ms remaining: 453ms 313: learn: 0.0127768 total: 620ms remaining: 451ms 314: learn: 0.0127766 total: 622ms remaining: 448ms 315: learn: 0.0127766 total: 624ms remaining: 446ms 316: learn: 0.0127765 total: 625ms remaining: 444ms 317: learn: 0.0127764 total: 627ms remaining: 441ms 318: learn: 0.0127763 total: 628ms remaining: 439ms 319: learn: 0.0127763 total: 630ms remaining: 437ms 320: learn: 0.0127762 total: 632ms remaining: 435ms 321: learn: 0.0127762 total: 634ms remaining: 433ms 322: learn: 0.0127761 total: 636ms remaining: 431ms 323: learn: 0.0127761 total: 637ms remaining: 429ms 324: learn: 0.0127761 total: 639ms remaining: 427ms 325: learn: 0.0127761 total: 641ms remaining: 424ms 326: learn: 0.0127761 total: 642ms remaining: 422ms 327: learn: 0.0127760 total: 644ms remaining: 420ms 328: learn: 0.0127760 total: 646ms remaining: 418ms 329: learn: 0.0127758 total: 647ms remaining: 416ms 330: learn: 0.0127757 total: 649ms remaining: 413ms 331: learn: 0.0127755 total: 650ms remaining: 411ms 332: learn: 0.0127752 total: 652ms remaining: 409ms 333: learn: 0.0127751 total: 653ms remaining: 407ms 334: learn: 0.0127751 total: 655ms remaining: 404ms 335: learn: 0.0127750 total: 656ms remaining: 402ms 336: learn: 0.0127749 total: 658ms remaining: 400ms 337: learn: 0.0127749 total: 660ms remaining: 398ms 338: learn: 0.0126858 total: 662ms remaining: 396ms 339: learn: 0.0126857 total: 663ms remaining: 394ms 340: learn: 0.0126857 total: 665ms remaining: 392ms 341: learn: 0.0126856 total: 666ms remaining: 390ms 342: learn: 0.0126856 total: 668ms remaining: 387ms 343: learn: 0.0126857 total: 669ms remaining: 385ms 344: learn: 0.0126854 total: 671ms remaining: 383ms 345: learn: 0.0126855 total: 672ms remaining: 381ms 346: learn: 0.0126853 total: 673ms remaining: 378ms 347: learn: 0.0126853 total: 675ms remaining: 376ms 348: learn: 0.0126854 total: 676ms remaining: 374ms 349: learn: 0.0126851 total: 678ms remaining: 372ms 350: learn: 0.0126850 total: 679ms remaining: 370ms 351: learn: 0.0126850 total: 681ms remaining: 367ms 352: learn: 0.0126850 total: 682ms remaining: 365ms 353: learn: 0.0126849 total: 684ms remaining: 363ms 354: learn: 0.0126848 total: 685ms remaining: 361ms 355: learn: 0.0126848 total: 687ms remaining: 359ms 356: learn: 0.0126846 total: 688ms remaining: 357ms 357: learn: 0.0126845 total: 690ms remaining: 354ms 358: learn: 0.0126845 total: 691ms remaining: 352ms 359: learn: 0.0126845 total: 693ms remaining: 350ms 360: learn: 0.0126843 total: 694ms remaining: 348ms 361: learn: 0.0126843 total: 695ms remaining: 346ms 362: learn: 0.0126843 total: 697ms remaining: 344ms 363: learn: 0.0126842 total: 698ms remaining: 341ms 364: learn: 0.0126843 total: 700ms remaining: 339ms 365: learn: 0.0126842 total: 701ms remaining: 337ms 366: learn: 0.0126842 total: 702ms remaining: 335ms 367: learn: 0.0126842 total: 704ms remaining: 333ms 368: learn: 0.0126842 total: 706ms remaining: 331ms 369: learn: 0.0126841 total: 708ms remaining: 329ms 370: learn: 0.0126840 total: 709ms remaining: 327ms 371: learn: 0.0126839 total: 711ms remaining: 325ms 372: learn: 0.0126839 total: 712ms remaining: 323ms 373: learn: 0.0126839 total: 714ms remaining: 321ms 374: learn: 0.0126838 total: 715ms remaining: 318ms 375: learn: 0.0126838 total: 717ms remaining: 316ms 376: learn: 0.0126838 total: 718ms remaining: 314ms 377: learn: 0.0126836 total: 720ms remaining: 312ms 378: learn: 0.0126835 total: 721ms remaining: 310ms 379: learn: 0.0126835 total: 723ms remaining: 308ms 380: learn: 0.0126835 total: 724ms remaining: 306ms 381: learn: 0.0126834 total: 726ms remaining: 304ms 382: learn: 0.0126833 total: 727ms remaining: 302ms 383: learn: 0.0126833 total: 729ms remaining: 300ms 384: learn: 0.0126831 total: 730ms remaining: 298ms 385: learn: 0.0126830 total: 731ms remaining: 296ms 386: learn: 0.0126830 total: 733ms remaining: 294ms 387: learn: 0.0126830 total: 735ms remaining: 292ms 388: learn: 0.0126830 total: 737ms remaining: 290ms 389: learn: 0.0126830 total: 739ms remaining: 288ms 390: learn: 0.0126830 total: 740ms remaining: 286ms 391: learn: 0.0126829 total: 742ms remaining: 284ms 392: learn: 0.0126829 total: 743ms remaining: 282ms 393: learn: 0.0126829 total: 758ms remaining: 285ms 394: learn: 0.0126828 total: 760ms remaining: 283ms 395: learn: 0.0126828 total: 761ms remaining: 281ms 396: learn: 0.0126049 total: 763ms remaining: 279ms 397: learn: 0.0125205 total: 765ms remaining: 277ms 398: learn: 0.0124231 total: 767ms remaining: 275ms 399: learn: 0.0123551 total: 769ms remaining: 273ms 400: learn: 0.0122768 total: 770ms remaining: 271ms 401: learn: 0.0122259 total: 772ms remaining: 269ms 402: learn: 0.0121716 total: 774ms remaining: 267ms 403: learn: 0.0121081 total: 775ms remaining: 265ms 404: learn: 0.0121073 total: 777ms remaining: 263ms 405: learn: 0.0121073 total: 778ms remaining: 261ms 406: learn: 0.0121073 total: 780ms remaining: 259ms 407: learn: 0.0121072 total: 782ms remaining: 257ms 408: learn: 0.0121072 total: 783ms remaining: 255ms 409: learn: 0.0121072 total: 784ms remaining: 253ms 410: learn: 0.0121072 total: 786ms remaining: 250ms 411: learn: 0.0121071 total: 787ms remaining: 248ms 412: learn: 0.0121070 total: 789ms remaining: 246ms 413: learn: 0.0121070 total: 790ms remaining: 244ms 414: learn: 0.0121070 total: 791ms remaining: 242ms 415: learn: 0.0121069 total: 793ms remaining: 240ms 416: learn: 0.0121069 total: 794ms remaining: 238ms 417: learn: 0.0121068 total: 796ms remaining: 236ms 418: learn: 0.0121069 total: 798ms remaining: 234ms 419: learn: 0.0121067 total: 799ms remaining: 232ms 420: learn: 0.0121066 total: 801ms remaining: 230ms 421: learn: 0.0121066 total: 803ms remaining: 228ms 422: learn: 0.0121066 total: 804ms remaining: 226ms 423: learn: 0.0121065 total: 805ms remaining: 224ms 424: learn: 0.0121065 total: 807ms remaining: 222ms 425: learn: 0.0121064 total: 808ms remaining: 220ms 426: learn: 0.0121063 total: 809ms remaining: 218ms 427: learn: 0.0121063 total: 811ms remaining: 216ms 428: learn: 0.0121062 total: 812ms remaining: 214ms 429: learn: 0.0121062 total: 814ms remaining: 212ms 430: learn: 0.0121062 total: 816ms remaining: 210ms 431: learn: 0.0121061 total: 818ms remaining: 208ms 432: learn: 0.0121062 total: 820ms remaining: 206ms 433: learn: 0.0121062 total: 821ms remaining: 204ms 434: learn: 0.0121060 total: 823ms remaining: 202ms 435: learn: 0.0121060 total: 824ms remaining: 200ms 436: learn: 0.0121058 total: 826ms remaining: 198ms 437: learn: 0.0121057 total: 828ms remaining: 197ms 438: learn: 0.0121057 total: 830ms remaining: 195ms 439: learn: 0.0121057 total: 832ms remaining: 193ms 440: learn: 0.0121057 total: 833ms remaining: 191ms 441: learn: 0.0121055 total: 835ms remaining: 189ms 442: learn: 0.0121053 total: 837ms remaining: 187ms 443: learn: 0.0120877 total: 839ms remaining: 185ms 444: learn: 0.0120877 total: 840ms remaining: 183ms 445: learn: 0.0120876 total: 842ms remaining: 181ms 446: learn: 0.0120876 total: 843ms remaining: 179ms 447: learn: 0.0120876 total: 845ms remaining: 177ms 448: learn: 0.0120876 total: 846ms remaining: 175ms 449: learn: 0.0120875 total: 848ms remaining: 173ms 450: learn: 0.0120875 total: 849ms remaining: 171ms 451: learn: 0.0120875 total: 851ms remaining: 169ms 452: learn: 0.0120874 total: 852ms remaining: 167ms 453: learn: 0.0120874 total: 854ms remaining: 165ms 454: learn: 0.0120874 total: 855ms remaining: 164ms 455: learn: 0.0120872 total: 857ms remaining: 162ms 456: learn: 0.0120872 total: 859ms remaining: 160ms 457: learn: 0.0120872 total: 860ms remaining: 158ms 458: learn: 0.0120872 total: 862ms remaining: 156ms 459: learn: 0.0120871 total: 864ms remaining: 154ms 460: learn: 0.0120218 total: 865ms remaining: 152ms 461: learn: 0.0118812 total: 867ms remaining: 150ms 462: learn: 0.0118033 total: 869ms remaining: 148ms 463: learn: 0.0117209 total: 871ms remaining: 146ms 464: learn: 0.0117201 total: 874ms remaining: 145ms 465: learn: 0.0117201 total: 876ms remaining: 143ms 466: learn: 0.0117200 total: 878ms remaining: 141ms 467: learn: 0.0117200 total: 880ms remaining: 139ms 468: learn: 0.0117199 total: 882ms remaining: 137ms 469: learn: 0.0117199 total: 884ms remaining: 135ms 470: learn: 0.0117198 total: 888ms remaining: 134ms 471: learn: 0.0117197 total: 890ms remaining: 132ms 472: learn: 0.0117197 total: 892ms remaining: 130ms 473: learn: 0.0117197 total: 894ms remaining: 128ms 474: learn: 0.0117197 total: 896ms remaining: 126ms 475: learn: 0.0117196 total: 898ms remaining: 124ms 476: learn: 0.0117195 total: 900ms remaining: 123ms 477: learn: 0.0117196 total: 902ms remaining: 121ms 478: learn: 0.0117195 total: 904ms remaining: 119ms 479: learn: 0.0117194 total: 906ms remaining: 117ms 480: learn: 0.0117194 total: 908ms remaining: 115ms 481: learn: 0.0117194 total: 909ms remaining: 113ms 482: learn: 0.0117192 total: 911ms remaining: 111ms 483: learn: 0.0117192 total: 912ms remaining: 109ms 484: learn: 0.0117192 total: 914ms remaining: 107ms 485: learn: 0.0117192 total: 915ms remaining: 105ms 486: learn: 0.0117193 total: 917ms remaining: 104ms 487: learn: 0.0116500 total: 919ms remaining: 102ms 488: learn: 0.0116500 total: 921ms remaining: 99.8ms 489: learn: 0.0116500 total: 923ms remaining: 97.9ms 490: learn: 0.0116500 total: 924ms remaining: 96ms 491: learn: 0.0116500 total: 926ms remaining: 94.1ms 492: learn: 0.0116499 total: 928ms remaining: 92.2ms 493: learn: 0.0116498 total: 930ms remaining: 90.3ms 494: learn: 0.0116498 total: 931ms remaining: 88.4ms 495: learn: 0.0116497 total: 933ms remaining: 86.5ms 496: learn: 0.0116496 total: 934ms remaining: 84.6ms 497: learn: 0.0116496 total: 936ms remaining: 82.7ms 498: learn: 0.0116496 total: 938ms remaining: 80.8ms 499: learn: 0.0116496 total: 940ms remaining: 78.9ms 500: learn: 0.0116495 total: 941ms remaining: 77ms 501: learn: 0.0116494 total: 943ms remaining: 75.1ms 502: learn: 0.0116494 total: 944ms remaining: 73.2ms 503: learn: 0.0116494 total: 946ms remaining: 71.3ms 504: learn: 0.0116494 total: 948ms remaining: 69.4ms 505: learn: 0.0115680 total: 949ms remaining: 67.6ms 506: learn: 0.0115680 total: 951ms remaining: 65.6ms 507: learn: 0.0115344 total: 952ms remaining: 63.7ms 508: learn: 0.0115330 total: 954ms remaining: 61.8ms 509: learn: 0.0115329 total: 955ms remaining: 59.9ms 510: learn: 0.0115329 total: 956ms remaining: 58ms 511: learn: 0.0115329 total: 958ms remaining: 56.1ms 512: learn: 0.0115327 total: 959ms remaining: 54.2ms 513: learn: 0.0115327 total: 961ms remaining: 52.3ms 514: learn: 0.0115326 total: 962ms remaining: 50.4ms 515: learn: 0.0115325 total: 963ms remaining: 48.5ms 516: learn: 0.0115324 total: 965ms remaining: 46.6ms 517: learn: 0.0115324 total: 966ms remaining: 44.8ms 518: learn: 0.0115322 total: 967ms remaining: 42.9ms 519: learn: 0.0115301 total: 969ms remaining: 41ms 520: learn: 0.0114786 total: 971ms remaining: 39.1ms 521: learn: 0.0114772 total: 972ms remaining: 37.3ms 522: learn: 0.0114772 total: 974ms remaining: 35.4ms 523: learn: 0.0114772 total: 975ms remaining: 33.5ms 524: learn: 0.0114771 total: 977ms remaining: 31.6ms 525: learn: 0.0114771 total: 978ms remaining: 29.8ms 526: learn: 0.0114770 total: 980ms remaining: 27.9ms 527: learn: 0.0114769 total: 982ms remaining: 26ms 528: learn: 0.0114768 total: 983ms remaining: 24.2ms 529: learn: 0.0114767 total: 985ms remaining: 22.3ms 530: learn: 0.0114766 total: 986ms remaining: 20.4ms 531: learn: 0.0114766 total: 988ms remaining: 18.6ms 532: learn: 0.0114767 total: 989ms remaining: 16.7ms 533: learn: 0.0114766 total: 991ms remaining: 14.8ms 534: learn: 0.0114764 total: 992ms remaining: 13ms 535: learn: 0.0114765 total: 993ms remaining: 11.1ms 536: learn: 0.0114765 total: 995ms remaining: 9.26ms 537: learn: 0.0114765 total: 996ms remaining: 7.41ms 538: learn: 0.0114764 total: 998ms remaining: 5.55ms 539: learn: 0.0114762 total: 999ms remaining: 3.7ms 540: learn: 0.0114762 total: 1s remaining: 1.85ms 541: learn: 0.0114762 total: 1s remaining: 0us 0: learn: 0.5608792 total: 1.89ms remaining: 1.02s 1: learn: 0.4739313 total: 3.66ms remaining: 988ms 2: learn: 0.4061240 total: 5.74ms remaining: 1.03s 3: learn: 0.3639638 total: 7.28ms remaining: 979ms 4: learn: 0.3329878 total: 9.32ms remaining: 1s 5: learn: 0.3016934 total: 12.3ms remaining: 1.1s 6: learn: 0.2775180 total: 14.4ms remaining: 1.1s 7: learn: 0.2574487 total: 16.4ms remaining: 1.1s 8: learn: 0.2439048 total: 18.2ms remaining: 1.08s 9: learn: 0.2358456 total: 20ms remaining: 1.06s 10: learn: 0.2245165 total: 21.8ms remaining: 1.05s 11: learn: 0.2161144 total: 23.6ms remaining: 1.04s 12: learn: 0.2076905 total: 25.4ms remaining: 1.03s 13: learn: 0.1986645 total: 27.3ms remaining: 1.03s 14: learn: 0.1953091 total: 29.2ms remaining: 1.02s 15: learn: 0.1882308 total: 30.9ms remaining: 1.01s 16: learn: 0.1845039 total: 32.7ms remaining: 1.01s 17: learn: 0.1817585 total: 34.4ms remaining: 1s 18: learn: 0.1745170 total: 36.3ms remaining: 999ms 19: learn: 0.1712011 total: 38.2ms remaining: 996ms 20: learn: 0.1677930 total: 40.2ms remaining: 996ms 21: learn: 0.1645778 total: 42ms remaining: 993ms 22: learn: 0.1601335 total: 43.9ms remaining: 992ms 23: learn: 0.1559169 total: 45.8ms remaining: 989ms 24: learn: 0.1552704 total: 47.9ms remaining: 991ms 25: learn: 0.1512472 total: 49.8ms remaining: 988ms 26: learn: 0.1477779 total: 51.7ms remaining: 986ms 27: learn: 0.1456297 total: 53.4ms remaining: 981ms 28: learn: 0.1405299 total: 55.4ms remaining: 980ms 29: learn: 0.1382775 total: 57.2ms remaining: 976ms 30: learn: 0.1363517 total: 58.9ms remaining: 970ms 31: learn: 0.1343982 total: 60.5ms remaining: 965ms 32: learn: 0.1336558 total: 62.3ms remaining: 960ms 33: learn: 0.1333923 total: 64ms remaining: 957ms 34: learn: 0.1294404 total: 65.7ms remaining: 951ms 35: learn: 0.1266193 total: 67.5ms remaining: 949ms 36: learn: 0.1241272 total: 69.3ms remaining: 946ms 37: learn: 0.1207207 total: 71.3ms remaining: 946ms 38: learn: 0.1196566 total: 72.9ms remaining: 941ms 39: learn: 0.1164913 total: 74.5ms remaining: 935ms 40: learn: 0.1143950 total: 76.1ms remaining: 930ms 41: learn: 0.1125190 total: 77.9ms remaining: 927ms 42: learn: 0.1110453 total: 79.8ms remaining: 926ms 43: learn: 0.1097767 total: 81.6ms remaining: 923ms 44: learn: 0.1093547 total: 83.3ms remaining: 920ms 45: learn: 0.1067977 total: 85.2ms remaining: 919ms 46: learn: 0.1035013 total: 87.1ms remaining: 917ms 47: learn: 0.1021569 total: 88.9ms remaining: 915ms 48: learn: 0.0992679 total: 90.7ms remaining: 912ms 49: learn: 0.0982974 total: 92.6ms remaining: 911ms 50: learn: 0.0962521 total: 94.8ms remaining: 912ms 51: learn: 0.0925672 total: 96.7ms remaining: 911ms 52: learn: 0.0900548 total: 98.9ms remaining: 912ms 53: learn: 0.0863702 total: 101ms remaining: 909ms 54: learn: 0.0833439 total: 102ms remaining: 906ms 55: learn: 0.0829930 total: 104ms remaining: 903ms 56: learn: 0.0813576 total: 106ms remaining: 900ms 57: learn: 0.0811267 total: 112ms remaining: 933ms 58: learn: 0.0809168 total: 114ms remaining: 931ms 59: learn: 0.0789429 total: 116ms remaining: 929ms 60: learn: 0.0787403 total: 118ms remaining: 929ms 61: learn: 0.0779670 total: 120ms remaining: 929ms 62: learn: 0.0755021 total: 122ms remaining: 927ms 63: learn: 0.0749543 total: 124ms remaining: 925ms 64: learn: 0.0741304 total: 126ms remaining: 925ms 65: learn: 0.0726814 total: 128ms remaining: 923ms 66: learn: 0.0708597 total: 130ms remaining: 921ms 67: learn: 0.0698767 total: 132ms remaining: 917ms 68: learn: 0.0680085 total: 133ms remaining: 915ms 69: learn: 0.0664510 total: 135ms remaining: 912ms 70: learn: 0.0650658 total: 137ms remaining: 910ms 71: learn: 0.0630875 total: 139ms remaining: 907ms 72: learn: 0.0619367 total: 141ms remaining: 906ms 73: learn: 0.0606144 total: 143ms remaining: 904ms 74: learn: 0.0596356 total: 145ms remaining: 902ms 75: learn: 0.0590030 total: 147ms remaining: 900ms 76: learn: 0.0576470 total: 149ms remaining: 897ms 77: learn: 0.0574494 total: 150ms remaining: 894ms 78: learn: 0.0565003 total: 152ms remaining: 892ms 79: learn: 0.0562553 total: 154ms remaining: 891ms 80: learn: 0.0558951 total: 156ms remaining: 890ms 81: learn: 0.0557654 total: 158ms remaining: 888ms 82: learn: 0.0546668 total: 160ms remaining: 886ms 83: learn: 0.0535102 total: 162ms remaining: 885ms 84: learn: 0.0532951 total: 164ms remaining: 883ms 85: learn: 0.0525262 total: 166ms remaining: 882ms 86: learn: 0.0517893 total: 168ms remaining: 881ms 87: learn: 0.0514096 total: 171ms remaining: 880ms 88: learn: 0.0506449 total: 173ms remaining: 880ms 89: learn: 0.0495428 total: 175ms remaining: 879ms 90: learn: 0.0490028 total: 177ms remaining: 876ms 91: learn: 0.0478885 total: 179ms remaining: 873ms 92: learn: 0.0470022 total: 180ms remaining: 871ms 93: learn: 0.0467709 total: 182ms remaining: 867ms 94: learn: 0.0465191 total: 183ms remaining: 863ms 95: learn: 0.0462991 total: 185ms remaining: 860ms 96: learn: 0.0461283 total: 187ms remaining: 857ms 97: learn: 0.0459496 total: 188ms remaining: 854ms 98: learn: 0.0450233 total: 190ms remaining: 852ms 99: learn: 0.0439916 total: 192ms remaining: 850ms 100: learn: 0.0430411 total: 194ms remaining: 847ms 101: learn: 0.0428566 total: 196ms remaining: 845ms 102: learn: 0.0422337 total: 198ms remaining: 843ms 103: learn: 0.0412971 total: 199ms remaining: 840ms 104: learn: 0.0411918 total: 201ms remaining: 838ms 105: learn: 0.0410726 total: 203ms remaining: 836ms 106: learn: 0.0409668 total: 205ms remaining: 834ms 107: learn: 0.0406157 total: 208ms remaining: 834ms 108: learn: 0.0401002 total: 210ms remaining: 833ms 109: learn: 0.0398019 total: 212ms remaining: 832ms 110: learn: 0.0397127 total: 214ms remaining: 830ms 111: learn: 0.0396162 total: 216ms remaining: 829ms 112: learn: 0.0394288 total: 218ms remaining: 827ms 113: learn: 0.0388875 total: 220ms remaining: 825ms 114: learn: 0.0383211 total: 221ms remaining: 822ms 115: learn: 0.0378935 total: 223ms remaining: 820ms 116: learn: 0.0374222 total: 240ms remaining: 871ms 117: learn: 0.0368531 total: 241ms remaining: 867ms 118: learn: 0.0361009 total: 243ms remaining: 863ms 119: learn: 0.0356156 total: 244ms remaining: 860ms 120: learn: 0.0351396 total: 246ms remaining: 856ms 121: learn: 0.0347406 total: 248ms remaining: 854ms 122: learn: 0.0339655 total: 250ms remaining: 850ms 123: learn: 0.0335403 total: 251ms remaining: 847ms 124: learn: 0.0331121 total: 253ms remaining: 844ms 125: learn: 0.0327770 total: 255ms remaining: 841ms 126: learn: 0.0323517 total: 256ms remaining: 838ms 127: learn: 0.0318561 total: 258ms remaining: 835ms 128: learn: 0.0317953 total: 260ms remaining: 832ms 129: learn: 0.0314416 total: 262ms remaining: 829ms 130: learn: 0.0311333 total: 263ms remaining: 826ms 131: learn: 0.0309637 total: 265ms remaining: 824ms 132: learn: 0.0305932 total: 268ms remaining: 823ms 133: learn: 0.0302134 total: 269ms remaining: 820ms 134: learn: 0.0301109 total: 271ms remaining: 817ms 135: learn: 0.0299303 total: 273ms remaining: 814ms 136: learn: 0.0295968 total: 275ms remaining: 812ms 137: learn: 0.0295238 total: 276ms remaining: 809ms 138: learn: 0.0291377 total: 278ms remaining: 806ms 139: learn: 0.0287741 total: 280ms remaining: 803ms 140: learn: 0.0286043 total: 281ms remaining: 800ms 141: learn: 0.0285333 total: 283ms remaining: 797ms 142: learn: 0.0284940 total: 285ms remaining: 794ms 143: learn: 0.0281941 total: 286ms remaining: 791ms 144: learn: 0.0281318 total: 288ms remaining: 788ms 145: learn: 0.0279864 total: 289ms remaining: 784ms 146: learn: 0.0279527 total: 291ms remaining: 781ms 147: learn: 0.0277950 total: 292ms remaining: 779ms 148: learn: 0.0277654 total: 295ms remaining: 777ms 149: learn: 0.0275901 total: 297ms remaining: 775ms 150: learn: 0.0271665 total: 299ms remaining: 773ms 151: learn: 0.0268400 total: 300ms remaining: 770ms 152: learn: 0.0265937 total: 302ms remaining: 768ms 153: learn: 0.0264309 total: 304ms remaining: 765ms 154: learn: 0.0261046 total: 306ms remaining: 764ms 155: learn: 0.0258538 total: 308ms remaining: 761ms 156: learn: 0.0257012 total: 309ms remaining: 759ms 157: learn: 0.0256647 total: 311ms remaining: 756ms 158: learn: 0.0256238 total: 313ms remaining: 754ms 159: learn: 0.0254097 total: 315ms remaining: 751ms 160: learn: 0.0252101 total: 317ms remaining: 749ms 161: learn: 0.0249955 total: 318ms remaining: 746ms 162: learn: 0.0249355 total: 320ms remaining: 743ms 163: learn: 0.0247721 total: 321ms remaining: 741ms 164: learn: 0.0246091 total: 323ms remaining: 738ms 165: learn: 0.0244730 total: 325ms remaining: 736ms 166: learn: 0.0242757 total: 327ms remaining: 734ms 167: learn: 0.0240714 total: 328ms remaining: 731ms 168: learn: 0.0237728 total: 330ms remaining: 728ms 169: learn: 0.0235921 total: 332ms remaining: 726ms 170: learn: 0.0233635 total: 333ms remaining: 723ms 171: learn: 0.0232864 total: 335ms remaining: 720ms 172: learn: 0.0231527 total: 336ms remaining: 717ms 173: learn: 0.0229906 total: 338ms remaining: 715ms 174: learn: 0.0228632 total: 340ms remaining: 712ms 175: learn: 0.0228328 total: 341ms remaining: 710ms 176: learn: 0.0225936 total: 343ms remaining: 707ms 177: learn: 0.0225123 total: 345ms remaining: 705ms 178: learn: 0.0224038 total: 346ms remaining: 702ms 179: learn: 0.0222610 total: 348ms remaining: 699ms 180: learn: 0.0219157 total: 349ms remaining: 697ms 181: learn: 0.0218471 total: 351ms remaining: 694ms 182: learn: 0.0216515 total: 353ms remaining: 692ms 183: learn: 0.0214675 total: 355ms remaining: 690ms 184: learn: 0.0212499 total: 357ms remaining: 688ms 185: learn: 0.0211961 total: 359ms remaining: 686ms 186: learn: 0.0210535 total: 361ms remaining: 685ms 187: learn: 0.0209919 total: 363ms remaining: 683ms 188: learn: 0.0208280 total: 365ms remaining: 681ms 189: learn: 0.0206659 total: 366ms remaining: 679ms 190: learn: 0.0205208 total: 368ms remaining: 677ms 191: learn: 0.0203860 total: 370ms remaining: 675ms 192: learn: 0.0203039 total: 372ms remaining: 673ms 193: learn: 0.0202858 total: 374ms remaining: 670ms 194: learn: 0.0201595 total: 375ms remaining: 668ms 195: learn: 0.0201449 total: 377ms remaining: 665ms 196: learn: 0.0200378 total: 379ms remaining: 663ms 197: learn: 0.0198771 total: 380ms remaining: 661ms 198: learn: 0.0197627 total: 382ms remaining: 658ms 199: learn: 0.0194590 total: 384ms remaining: 656ms 200: learn: 0.0194039 total: 386ms remaining: 655ms 201: learn: 0.0192109 total: 388ms remaining: 653ms 202: learn: 0.0191908 total: 390ms remaining: 651ms 203: learn: 0.0190590 total: 392ms remaining: 649ms 204: learn: 0.0189997 total: 394ms remaining: 647ms 205: learn: 0.0189293 total: 396ms remaining: 646ms 206: learn: 0.0187315 total: 398ms remaining: 643ms 207: learn: 0.0184743 total: 400ms remaining: 642ms 208: learn: 0.0182203 total: 402ms remaining: 640ms 209: learn: 0.0179932 total: 403ms remaining: 638ms 210: learn: 0.0178070 total: 405ms remaining: 636ms 211: learn: 0.0176843 total: 407ms remaining: 634ms 212: learn: 0.0175219 total: 409ms remaining: 632ms 213: learn: 0.0173931 total: 411ms remaining: 629ms 214: learn: 0.0172574 total: 413ms remaining: 628ms 215: learn: 0.0172431 total: 415ms remaining: 627ms 216: learn: 0.0171806 total: 417ms remaining: 625ms 217: learn: 0.0170522 total: 419ms remaining: 623ms 218: learn: 0.0168832 total: 421ms remaining: 621ms 219: learn: 0.0166707 total: 423ms remaining: 619ms 220: learn: 0.0166102 total: 425ms remaining: 617ms 221: learn: 0.0165744 total: 427ms remaining: 615ms 222: learn: 0.0164398 total: 429ms remaining: 613ms 223: learn: 0.0163709 total: 430ms remaining: 611ms 224: learn: 0.0162745 total: 432ms remaining: 609ms 225: learn: 0.0162122 total: 434ms remaining: 607ms 226: learn: 0.0160670 total: 436ms remaining: 605ms 227: learn: 0.0159791 total: 438ms remaining: 603ms 228: learn: 0.0159450 total: 439ms remaining: 601ms 229: learn: 0.0158943 total: 441ms remaining: 599ms 230: learn: 0.0158427 total: 443ms remaining: 596ms 231: learn: 0.0157636 total: 445ms remaining: 594ms 232: learn: 0.0157569 total: 446ms remaining: 592ms 233: learn: 0.0157278 total: 448ms remaining: 590ms 234: learn: 0.0156873 total: 450ms remaining: 588ms 235: learn: 0.0155970 total: 452ms remaining: 586ms 236: learn: 0.0154475 total: 454ms remaining: 584ms 237: learn: 0.0153116 total: 456ms remaining: 582ms 238: learn: 0.0153050 total: 458ms remaining: 580ms 239: learn: 0.0152128 total: 460ms remaining: 578ms 240: learn: 0.0151816 total: 462ms remaining: 577ms 241: learn: 0.0151435 total: 464ms remaining: 575ms 242: learn: 0.0150979 total: 465ms remaining: 573ms 243: learn: 0.0150181 total: 467ms remaining: 571ms 244: learn: 0.0149476 total: 469ms remaining: 569ms 245: learn: 0.0148299 total: 471ms remaining: 567ms 246: learn: 0.0147112 total: 472ms remaining: 564ms 247: learn: 0.0146722 total: 474ms remaining: 562ms 248: learn: 0.0145671 total: 476ms remaining: 560ms 249: learn: 0.0145356 total: 477ms remaining: 558ms 250: learn: 0.0144952 total: 479ms remaining: 555ms 251: learn: 0.0144280 total: 481ms remaining: 553ms 252: learn: 0.0144220 total: 482ms remaining: 551ms 253: learn: 0.0143516 total: 484ms remaining: 549ms 254: learn: 0.0143276 total: 485ms remaining: 546ms 255: learn: 0.0143218 total: 487ms remaining: 544ms 256: learn: 0.0142998 total: 489ms remaining: 542ms 257: learn: 0.0142363 total: 491ms remaining: 540ms 258: learn: 0.0141053 total: 493ms remaining: 538ms 259: learn: 0.0140229 total: 494ms remaining: 536ms 260: learn: 0.0139944 total: 496ms remaining: 534ms 261: learn: 0.0139752 total: 498ms remaining: 532ms 262: learn: 0.0138448 total: 500ms remaining: 531ms 263: learn: 0.0137367 total: 502ms remaining: 529ms 264: learn: 0.0136930 total: 504ms remaining: 527ms 265: learn: 0.0136342 total: 506ms remaining: 525ms 266: learn: 0.0135335 total: 507ms remaining: 523ms 267: learn: 0.0134973 total: 509ms remaining: 520ms 268: learn: 0.0134363 total: 511ms remaining: 518ms 269: learn: 0.0133699 total: 512ms remaining: 516ms 270: learn: 0.0133064 total: 514ms remaining: 514ms 271: learn: 0.0132725 total: 516ms remaining: 512ms 272: learn: 0.0132363 total: 518ms remaining: 510ms 273: learn: 0.0132144 total: 520ms remaining: 508ms 274: learn: 0.0131572 total: 521ms remaining: 506ms 275: learn: 0.0130568 total: 523ms remaining: 504ms 276: learn: 0.0129956 total: 525ms remaining: 502ms 277: learn: 0.0129168 total: 527ms remaining: 500ms 278: learn: 0.0128428 total: 528ms remaining: 498ms 279: learn: 0.0128093 total: 530ms remaining: 496ms 280: learn: 0.0127850 total: 532ms remaining: 494ms 281: learn: 0.0127605 total: 533ms remaining: 492ms 282: learn: 0.0127084 total: 535ms remaining: 490ms 283: learn: 0.0126534 total: 537ms remaining: 488ms 284: learn: 0.0126110 total: 538ms remaining: 485ms 285: learn: 0.0125626 total: 540ms remaining: 483ms 286: learn: 0.0125429 total: 541ms remaining: 481ms 287: learn: 0.0125194 total: 543ms remaining: 479ms 288: learn: 0.0124269 total: 544ms remaining: 477ms 289: learn: 0.0123495 total: 546ms remaining: 475ms 290: learn: 0.0123251 total: 548ms remaining: 473ms 291: learn: 0.0122594 total: 550ms remaining: 471ms 292: learn: 0.0122194 total: 552ms remaining: 469ms 293: learn: 0.0122043 total: 553ms remaining: 467ms 294: learn: 0.0121819 total: 555ms remaining: 465ms 295: learn: 0.0120861 total: 556ms remaining: 462ms 296: learn: 0.0120861 total: 558ms remaining: 460ms 297: learn: 0.0120236 total: 559ms remaining: 458ms 298: learn: 0.0119445 total: 561ms remaining: 456ms 299: learn: 0.0118685 total: 562ms remaining: 454ms 300: learn: 0.0118045 total: 564ms remaining: 451ms 301: learn: 0.0117321 total: 565ms remaining: 449ms 302: learn: 0.0116434 total: 567ms remaining: 447ms 303: learn: 0.0116035 total: 568ms remaining: 445ms 304: learn: 0.0115033 total: 570ms remaining: 443ms 305: learn: 0.0114111 total: 572ms remaining: 441ms 306: learn: 0.0113463 total: 573ms remaining: 439ms 307: learn: 0.0113191 total: 575ms remaining: 437ms 308: learn: 0.0112609 total: 576ms remaining: 435ms 309: learn: 0.0112383 total: 578ms remaining: 433ms 310: learn: 0.0112203 total: 580ms remaining: 431ms 311: learn: 0.0112009 total: 582ms remaining: 429ms 312: learn: 0.0111352 total: 585ms remaining: 428ms 313: learn: 0.0111151 total: 587ms remaining: 426ms 314: learn: 0.0110731 total: 588ms remaining: 424ms 315: learn: 0.0110718 total: 590ms remaining: 422ms 316: learn: 0.0110328 total: 592ms remaining: 420ms 317: learn: 0.0109714 total: 593ms remaining: 418ms 318: learn: 0.0108896 total: 595ms remaining: 416ms 319: learn: 0.0108750 total: 597ms remaining: 414ms 320: learn: 0.0108602 total: 598ms remaining: 412ms 321: learn: 0.0107992 total: 600ms remaining: 410ms 322: learn: 0.0107387 total: 602ms remaining: 408ms 323: learn: 0.0106866 total: 604ms remaining: 406ms 324: learn: 0.0106457 total: 606ms remaining: 404ms 325: learn: 0.0106098 total: 607ms remaining: 402ms 326: learn: 0.0105955 total: 609ms remaining: 400ms 327: learn: 0.0105383 total: 611ms remaining: 398ms 328: learn: 0.0104760 total: 612ms remaining: 397ms 329: learn: 0.0104542 total: 614ms remaining: 395ms 330: learn: 0.0104278 total: 616ms remaining: 393ms 331: learn: 0.0104278 total: 618ms remaining: 391ms 332: learn: 0.0103832 total: 619ms remaining: 389ms 333: learn: 0.0103417 total: 621ms remaining: 387ms 334: learn: 0.0103417 total: 623ms remaining: 385ms 335: learn: 0.0102816 total: 624ms remaining: 383ms 336: learn: 0.0102669 total: 626ms remaining: 381ms 337: learn: 0.0102250 total: 628ms remaining: 379ms 338: learn: 0.0101857 total: 630ms remaining: 377ms 339: learn: 0.0101518 total: 632ms remaining: 375ms 340: learn: 0.0100831 total: 633ms remaining: 373ms 341: learn: 0.0100706 total: 635ms remaining: 372ms 342: learn: 0.0100382 total: 637ms remaining: 370ms 343: learn: 0.0099858 total: 639ms remaining: 368ms 344: learn: 0.0099215 total: 641ms remaining: 366ms 345: learn: 0.0098915 total: 643ms remaining: 364ms 346: learn: 0.0098915 total: 645ms remaining: 362ms 347: learn: 0.0098533 total: 647ms remaining: 361ms 348: learn: 0.0098098 total: 648ms remaining: 359ms 349: learn: 0.0097490 total: 650ms remaining: 356ms 350: learn: 0.0096889 total: 651ms remaining: 354ms 351: learn: 0.0096561 total: 653ms remaining: 352ms 352: learn: 0.0096234 total: 654ms remaining: 350ms 353: learn: 0.0095669 total: 656ms remaining: 348ms 354: learn: 0.0095140 total: 657ms remaining: 346ms 355: learn: 0.0094944 total: 659ms remaining: 344ms 356: learn: 0.0094820 total: 661ms remaining: 342ms 357: learn: 0.0094406 total: 662ms remaining: 340ms 358: learn: 0.0094296 total: 664ms remaining: 338ms 359: learn: 0.0093818 total: 665ms remaining: 336ms 360: learn: 0.0093402 total: 667ms remaining: 335ms 361: learn: 0.0092944 total: 669ms remaining: 333ms 362: learn: 0.0092564 total: 671ms remaining: 331ms 363: learn: 0.0092115 total: 673ms remaining: 329ms 364: learn: 0.0091711 total: 674ms remaining: 327ms 365: learn: 0.0091285 total: 676ms remaining: 325ms 366: learn: 0.0091284 total: 678ms remaining: 323ms 367: learn: 0.0091212 total: 680ms remaining: 321ms 368: learn: 0.0091095 total: 682ms remaining: 320ms 369: learn: 0.0090988 total: 684ms remaining: 318ms 370: learn: 0.0090438 total: 685ms remaining: 316ms 371: learn: 0.0090123 total: 687ms remaining: 314ms 372: learn: 0.0090028 total: 689ms remaining: 312ms 373: learn: 0.0089776 total: 690ms remaining: 310ms 374: learn: 0.0089395 total: 692ms remaining: 308ms 375: learn: 0.0089004 total: 693ms remaining: 306ms 376: learn: 0.0088754 total: 695ms remaining: 304ms 377: learn: 0.0088345 total: 696ms remaining: 302ms 378: learn: 0.0088145 total: 698ms remaining: 300ms 379: learn: 0.0087760 total: 699ms remaining: 298ms 380: learn: 0.0087760 total: 701ms remaining: 296ms 381: learn: 0.0087378 total: 703ms remaining: 294ms 382: learn: 0.0087287 total: 704ms remaining: 292ms 383: learn: 0.0087015 total: 706ms remaining: 290ms 384: learn: 0.0086595 total: 707ms remaining: 288ms 385: learn: 0.0086107 total: 709ms remaining: 286ms 386: learn: 0.0085733 total: 710ms remaining: 284ms 387: learn: 0.0085412 total: 712ms remaining: 283ms 388: learn: 0.0085091 total: 713ms remaining: 281ms 389: learn: 0.0084839 total: 715ms remaining: 279ms 390: learn: 0.0084443 total: 717ms remaining: 277ms 391: learn: 0.0084239 total: 718ms remaining: 275ms 392: learn: 0.0083891 total: 720ms remaining: 273ms 393: learn: 0.0083768 total: 721ms remaining: 271ms 394: learn: 0.0083230 total: 723ms remaining: 269ms 395: learn: 0.0083010 total: 725ms remaining: 267ms 396: learn: 0.0082596 total: 726ms remaining: 265ms 397: learn: 0.0082273 total: 728ms remaining: 263ms 398: learn: 0.0082056 total: 730ms remaining: 262ms 399: learn: 0.0081759 total: 732ms remaining: 260ms 400: learn: 0.0081360 total: 734ms remaining: 258ms 401: learn: 0.0081021 total: 735ms remaining: 256ms 402: learn: 0.0080854 total: 737ms remaining: 254ms 403: learn: 0.0080544 total: 739ms remaining: 252ms 404: learn: 0.0080222 total: 740ms remaining: 250ms 405: learn: 0.0080021 total: 742ms remaining: 249ms 406: learn: 0.0079692 total: 744ms remaining: 247ms 407: learn: 0.0079474 total: 746ms remaining: 245ms 408: learn: 0.0079401 total: 747ms remaining: 243ms 409: learn: 0.0078990 total: 749ms remaining: 241ms 410: learn: 0.0078910 total: 750ms remaining: 239ms 411: learn: 0.0078525 total: 752ms remaining: 237ms 412: learn: 0.0078174 total: 753ms remaining: 235ms 413: learn: 0.0077868 total: 755ms remaining: 233ms 414: learn: 0.0077698 total: 756ms remaining: 231ms 415: learn: 0.0077539 total: 758ms remaining: 230ms 416: learn: 0.0077261 total: 760ms remaining: 228ms 417: learn: 0.0077068 total: 762ms remaining: 226ms 418: learn: 0.0076832 total: 764ms remaining: 224ms 419: learn: 0.0076522 total: 766ms remaining: 223ms 420: learn: 0.0076354 total: 768ms remaining: 221ms 421: learn: 0.0076167 total: 770ms remaining: 219ms 422: learn: 0.0075854 total: 771ms remaining: 217ms 423: learn: 0.0075637 total: 773ms remaining: 215ms 424: learn: 0.0075541 total: 775ms remaining: 213ms 425: learn: 0.0075282 total: 777ms remaining: 212ms 426: learn: 0.0075035 total: 779ms remaining: 210ms 427: learn: 0.0074862 total: 780ms remaining: 208ms 428: learn: 0.0074613 total: 782ms remaining: 206ms 429: learn: 0.0074337 total: 783ms remaining: 204ms 430: learn: 0.0074269 total: 785ms remaining: 202ms 431: learn: 0.0074055 total: 786ms remaining: 200ms 432: learn: 0.0073919 total: 788ms remaining: 198ms 433: learn: 0.0073732 total: 790ms remaining: 197ms 434: learn: 0.0073472 total: 792ms remaining: 195ms 435: learn: 0.0073469 total: 793ms remaining: 193ms 436: learn: 0.0073234 total: 795ms remaining: 191ms 437: learn: 0.0073234 total: 796ms remaining: 189ms 438: learn: 0.0072982 total: 798ms remaining: 187ms 439: learn: 0.0072537 total: 799ms remaining: 185ms 440: learn: 0.0072345 total: 801ms remaining: 183ms 441: learn: 0.0072294 total: 802ms remaining: 182ms 442: learn: 0.0072167 total: 804ms remaining: 180ms 443: learn: 0.0071978 total: 806ms remaining: 178ms 444: learn: 0.0071679 total: 807ms remaining: 176ms 445: learn: 0.0071514 total: 809ms remaining: 174ms 446: learn: 0.0071285 total: 811ms remaining: 172ms 447: learn: 0.0071104 total: 812ms remaining: 170ms 448: learn: 0.0071104 total: 813ms remaining: 168ms 449: learn: 0.0070849 total: 815ms remaining: 167ms 450: learn: 0.0070680 total: 816ms remaining: 165ms 451: learn: 0.0070424 total: 818ms remaining: 163ms 452: learn: 0.0070212 total: 820ms remaining: 161ms 453: learn: 0.0069999 total: 821ms remaining: 159ms 454: learn: 0.0069714 total: 823ms remaining: 157ms 455: learn: 0.0069508 total: 824ms remaining: 155ms 456: learn: 0.0069392 total: 826ms remaining: 154ms 457: learn: 0.0069059 total: 827ms remaining: 152ms 458: learn: 0.0068872 total: 829ms remaining: 150ms 459: learn: 0.0068704 total: 830ms remaining: 148ms 460: learn: 0.0068499 total: 832ms remaining: 146ms 461: learn: 0.0068350 total: 834ms remaining: 144ms 462: learn: 0.0068299 total: 835ms remaining: 143ms 463: learn: 0.0068123 total: 837ms remaining: 141ms 464: learn: 0.0068123 total: 839ms remaining: 139ms 465: learn: 0.0067873 total: 841ms remaining: 137ms 466: learn: 0.0067822 total: 842ms remaining: 135ms 467: learn: 0.0067683 total: 844ms remaining: 133ms 468: learn: 0.0067425 total: 846ms remaining: 132ms 469: learn: 0.0067196 total: 847ms remaining: 130ms 470: learn: 0.0067143 total: 849ms remaining: 128ms 471: learn: 0.0067014 total: 851ms remaining: 126ms 472: learn: 0.0066790 total: 852ms remaining: 124ms 473: learn: 0.0066507 total: 854ms remaining: 123ms 474: learn: 0.0066399 total: 856ms remaining: 121ms 475: learn: 0.0066215 total: 858ms remaining: 119ms 476: learn: 0.0066043 total: 859ms remaining: 117ms 477: learn: 0.0066040 total: 860ms remaining: 115ms 478: learn: 0.0065863 total: 862ms remaining: 113ms 479: learn: 0.0065760 total: 864ms remaining: 112ms 480: learn: 0.0065703 total: 865ms remaining: 110ms 481: learn: 0.0065609 total: 867ms remaining: 108ms 482: learn: 0.0065440 total: 869ms remaining: 106ms 483: learn: 0.0065275 total: 871ms remaining: 104ms 484: learn: 0.0065194 total: 872ms remaining: 103ms 485: learn: 0.0065074 total: 874ms remaining: 101ms 486: learn: 0.0064941 total: 876ms remaining: 98.9ms 487: learn: 0.0064915 total: 877ms remaining: 97.1ms 488: learn: 0.0064752 total: 879ms remaining: 95.3ms 489: learn: 0.0064678 total: 881ms remaining: 93.4ms 490: learn: 0.0064524 total: 882ms remaining: 91.6ms 491: learn: 0.0064508 total: 884ms remaining: 89.8ms 492: learn: 0.0064364 total: 886ms remaining: 88ms 493: learn: 0.0064298 total: 887ms remaining: 86.2ms 494: learn: 0.0064042 total: 889ms remaining: 84.4ms 495: learn: 0.0063809 total: 890ms remaining: 82.6ms 496: learn: 0.0063665 total: 892ms remaining: 80.8ms 497: learn: 0.0063664 total: 894ms remaining: 78.9ms 498: learn: 0.0063487 total: 895ms remaining: 77.2ms 499: learn: 0.0063215 total: 897ms remaining: 75.4ms 500: learn: 0.0063141 total: 899ms remaining: 73.6ms 501: learn: 0.0063138 total: 900ms remaining: 71.7ms 502: learn: 0.0062912 total: 902ms remaining: 69.9ms 503: learn: 0.0062910 total: 903ms remaining: 68.1ms 504: learn: 0.0062728 total: 905ms remaining: 66.3ms 505: learn: 0.0062727 total: 907ms remaining: 64.5ms 506: learn: 0.0062517 total: 908ms remaining: 62.7ms 507: learn: 0.0062356 total: 910ms remaining: 60.9ms 508: learn: 0.0062082 total: 912ms remaining: 59.1ms 509: learn: 0.0061948 total: 913ms remaining: 57.3ms 510: learn: 0.0061612 total: 915ms remaining: 55.5ms 511: learn: 0.0061360 total: 916ms remaining: 53.7ms 512: learn: 0.0061217 total: 918ms remaining: 51.9ms 513: learn: 0.0061014 total: 919ms remaining: 50.1ms 514: learn: 0.0060844 total: 921ms remaining: 48.3ms 515: learn: 0.0060781 total: 922ms remaining: 46.5ms 516: learn: 0.0060641 total: 924ms remaining: 44.7ms 517: learn: 0.0060628 total: 926ms remaining: 42.9ms 518: learn: 0.0060393 total: 928ms remaining: 41.1ms 519: learn: 0.0060353 total: 929ms remaining: 39.3ms 520: learn: 0.0060316 total: 931ms remaining: 37.5ms 521: learn: 0.0060316 total: 932ms remaining: 35.7ms 522: learn: 0.0060165 total: 934ms remaining: 33.9ms 523: learn: 0.0060104 total: 935ms remaining: 32.1ms 524: learn: 0.0060033 total: 937ms remaining: 30.3ms 525: learn: 0.0059837 total: 938ms remaining: 28.5ms 526: learn: 0.0059682 total: 940ms remaining: 26.8ms 527: learn: 0.0059537 total: 941ms remaining: 25ms 528: learn: 0.0059435 total: 943ms remaining: 23.2ms 529: learn: 0.0059203 total: 945ms remaining: 21.4ms 530: learn: 0.0059149 total: 946ms remaining: 19.6ms 531: learn: 0.0059101 total: 948ms remaining: 17.8ms 532: learn: 0.0059046 total: 949ms remaining: 16ms 533: learn: 0.0058867 total: 951ms remaining: 14.2ms 534: learn: 0.0058813 total: 952ms remaining: 12.5ms 535: learn: 0.0058624 total: 954ms remaining: 10.7ms 536: learn: 0.0058439 total: 956ms remaining: 8.9ms 537: learn: 0.0058438 total: 958ms remaining: 7.12ms 538: learn: 0.0058387 total: 959ms remaining: 5.34ms 539: learn: 0.0058334 total: 961ms remaining: 3.56ms 540: learn: 0.0058191 total: 963ms remaining: 1.78ms 541: learn: 0.0058044 total: 965ms remaining: 0us 0: learn: 0.5760504 total: 1.76ms remaining: 953ms 1: learn: 0.4713877 total: 3.63ms remaining: 980ms 2: learn: 0.4031854 total: 5.25ms remaining: 944ms 3: learn: 0.3553157 total: 7.01ms remaining: 944ms 4: learn: 0.3298034 total: 8.75ms remaining: 940ms 5: learn: 0.3094960 total: 10.6ms remaining: 945ms 6: learn: 0.2941595 total: 12.4ms remaining: 951ms 7: learn: 0.2772337 total: 14.3ms remaining: 951ms 8: learn: 0.2628721 total: 15.8ms remaining: 938ms 9: learn: 0.2574092 total: 17.1ms remaining: 911ms 10: learn: 0.2448794 total: 18.8ms remaining: 906ms 11: learn: 0.2419418 total: 20.3ms remaining: 898ms 12: learn: 0.2327553 total: 22.1ms remaining: 901ms 13: learn: 0.2249596 total: 23.7ms remaining: 896ms 14: learn: 0.2205127 total: 25.4ms remaining: 893ms 15: learn: 0.2147860 total: 27.1ms remaining: 891ms 16: learn: 0.2072371 total: 28.6ms remaining: 884ms 17: learn: 0.2026455 total: 30.3ms remaining: 881ms 18: learn: 0.1960631 total: 32ms remaining: 880ms 19: learn: 0.1892579 total: 33.6ms remaining: 877ms 20: learn: 0.1862977 total: 35.4ms remaining: 878ms 21: learn: 0.1797642 total: 37ms remaining: 875ms 22: learn: 0.1723097 total: 38.6ms remaining: 872ms 23: learn: 0.1670428 total: 40.4ms remaining: 872ms 24: learn: 0.1609536 total: 42.6ms remaining: 880ms 25: learn: 0.1563956 total: 44.4ms remaining: 880ms 26: learn: 0.1517267 total: 46.2ms remaining: 881ms 27: learn: 0.1496505 total: 47.9ms remaining: 880ms 28: learn: 0.1461032 total: 49.6ms remaining: 878ms 29: learn: 0.1415452 total: 51.2ms remaining: 873ms 30: learn: 0.1380990 total: 52.8ms remaining: 871ms 31: learn: 0.1337286 total: 54.7ms remaining: 872ms 32: learn: 0.1284169 total: 56.5ms remaining: 871ms 33: learn: 0.1254221 total: 58.4ms remaining: 872ms 34: learn: 0.1228747 total: 60.3ms remaining: 873ms 35: learn: 0.1212267 total: 61.8ms remaining: 869ms 36: learn: 0.1173931 total: 63.3ms remaining: 864ms 37: learn: 0.1148499 total: 64.9ms remaining: 861ms 38: learn: 0.1129666 total: 66.6ms remaining: 860ms 39: learn: 0.1123077 total: 68.2ms remaining: 856ms 40: learn: 0.1103712 total: 70ms remaining: 855ms 41: learn: 0.1083265 total: 71.8ms remaining: 855ms 42: learn: 0.1064435 total: 73.6ms remaining: 854ms 43: learn: 0.1042188 total: 75.3ms remaining: 853ms 44: learn: 0.1004505 total: 77ms remaining: 850ms 45: learn: 0.0964920 total: 78.5ms remaining: 846ms 46: learn: 0.0946511 total: 80ms remaining: 842ms 47: learn: 0.0927353 total: 81.7ms remaining: 841ms 48: learn: 0.0922038 total: 83.3ms remaining: 838ms 49: learn: 0.0898481 total: 85ms remaining: 836ms 50: learn: 0.0891110 total: 86.6ms remaining: 834ms 51: learn: 0.0868332 total: 88.2ms remaining: 831ms 52: learn: 0.0853167 total: 89.8ms remaining: 828ms 53: learn: 0.0829132 total: 91.4ms remaining: 826ms 54: learn: 0.0800560 total: 93ms remaining: 824ms 55: learn: 0.0778902 total: 94.7ms remaining: 822ms 56: learn: 0.0768472 total: 96.5ms remaining: 821ms 57: learn: 0.0753410 total: 98.1ms remaining: 819ms 58: learn: 0.0739420 total: 99.7ms remaining: 816ms 59: learn: 0.0737478 total: 101ms remaining: 814ms 60: learn: 0.0724914 total: 103ms remaining: 813ms 61: learn: 0.0706403 total: 105ms remaining: 811ms 62: learn: 0.0702050 total: 106ms remaining: 807ms 63: learn: 0.0700183 total: 108ms remaining: 804ms 64: learn: 0.0696063 total: 109ms remaining: 802ms 65: learn: 0.0682672 total: 111ms remaining: 799ms 66: learn: 0.0674068 total: 112ms remaining: 796ms 67: learn: 0.0665534 total: 114ms remaining: 793ms 68: learn: 0.0648671 total: 115ms remaining: 790ms 69: learn: 0.0635656 total: 117ms remaining: 787ms 70: learn: 0.0635009 total: 118ms remaining: 784ms 71: learn: 0.0621819 total: 120ms remaining: 781ms 72: learn: 0.0620421 total: 121ms remaining: 779ms 73: learn: 0.0617751 total: 123ms remaining: 776ms 74: learn: 0.0616279 total: 124ms remaining: 773ms 75: learn: 0.0614121 total: 126ms remaining: 770ms 76: learn: 0.0600040 total: 127ms remaining: 768ms 77: learn: 0.0597502 total: 129ms remaining: 768ms 78: learn: 0.0588887 total: 131ms remaining: 767ms 79: learn: 0.0581408 total: 133ms remaining: 767ms 80: learn: 0.0567778 total: 135ms remaining: 766ms 81: learn: 0.0558820 total: 136ms remaining: 764ms 82: learn: 0.0556477 total: 138ms remaining: 763ms 83: learn: 0.0554455 total: 164ms remaining: 896ms 84: learn: 0.0554145 total: 166ms remaining: 891ms 85: learn: 0.0544598 total: 167ms remaining: 887ms 86: learn: 0.0542166 total: 169ms remaining: 883ms 87: learn: 0.0540256 total: 170ms remaining: 878ms 88: learn: 0.0535770 total: 172ms remaining: 874ms 89: learn: 0.0527645 total: 173ms remaining: 871ms 90: learn: 0.0522048 total: 175ms remaining: 867ms 91: learn: 0.0508780 total: 176ms remaining: 863ms 92: learn: 0.0500671 total: 178ms remaining: 859ms 93: learn: 0.0491523 total: 179ms remaining: 855ms 94: learn: 0.0489937 total: 181ms remaining: 852ms 95: learn: 0.0488510 total: 182ms remaining: 847ms 96: learn: 0.0478261 total: 184ms remaining: 843ms 97: learn: 0.0473989 total: 185ms remaining: 840ms 98: learn: 0.0462650 total: 187ms remaining: 836ms 99: learn: 0.0462199 total: 188ms remaining: 833ms 100: learn: 0.0460288 total: 190ms remaining: 829ms 101: learn: 0.0452249 total: 191ms remaining: 826ms 102: learn: 0.0443822 total: 194ms remaining: 825ms 103: learn: 0.0438090 total: 195ms remaining: 823ms 104: learn: 0.0437300 total: 198ms remaining: 822ms 105: learn: 0.0435779 total: 199ms remaining: 819ms 106: learn: 0.0428164 total: 201ms remaining: 818ms 107: learn: 0.0422963 total: 203ms remaining: 816ms 108: learn: 0.0416940 total: 205ms remaining: 815ms 109: learn: 0.0415363 total: 207ms remaining: 813ms 110: learn: 0.0412214 total: 209ms remaining: 812ms 111: learn: 0.0411125 total: 211ms remaining: 809ms 112: learn: 0.0409731 total: 212ms remaining: 806ms 113: learn: 0.0409237 total: 214ms remaining: 804ms 114: learn: 0.0403814 total: 216ms remaining: 801ms 115: learn: 0.0398177 total: 217ms remaining: 798ms 116: learn: 0.0392151 total: 219ms remaining: 795ms 117: learn: 0.0385481 total: 221ms remaining: 793ms 118: learn: 0.0378566 total: 222ms remaining: 790ms 119: learn: 0.0376535 total: 224ms remaining: 789ms 120: learn: 0.0371884 total: 226ms remaining: 787ms 121: learn: 0.0368770 total: 228ms remaining: 785ms 122: learn: 0.0363002 total: 230ms remaining: 782ms 123: learn: 0.0359771 total: 231ms remaining: 780ms 124: learn: 0.0355494 total: 233ms remaining: 778ms 125: learn: 0.0350427 total: 235ms remaining: 777ms 126: learn: 0.0346290 total: 267ms remaining: 873ms 127: learn: 0.0341290 total: 269ms remaining: 870ms 128: learn: 0.0337906 total: 270ms remaining: 866ms 129: learn: 0.0332653 total: 272ms remaining: 862ms 130: learn: 0.0331900 total: 274ms remaining: 858ms 131: learn: 0.0327707 total: 275ms remaining: 855ms 132: learn: 0.0324096 total: 277ms remaining: 851ms 133: learn: 0.0320956 total: 278ms remaining: 847ms 134: learn: 0.0320269 total: 280ms remaining: 844ms 135: learn: 0.0319707 total: 282ms remaining: 841ms 136: learn: 0.0316969 total: 283ms remaining: 837ms 137: learn: 0.0316137 total: 285ms remaining: 834ms 138: learn: 0.0313662 total: 286ms remaining: 830ms 139: learn: 0.0306796 total: 288ms remaining: 826ms 140: learn: 0.0302570 total: 289ms remaining: 822ms 141: learn: 0.0300469 total: 291ms remaining: 818ms 142: learn: 0.0295623 total: 292ms remaining: 815ms 143: learn: 0.0292377 total: 294ms remaining: 811ms 144: learn: 0.0290300 total: 295ms remaining: 808ms 145: learn: 0.0287753 total: 297ms remaining: 806ms 146: learn: 0.0282587 total: 299ms remaining: 803ms 147: learn: 0.0280179 total: 301ms remaining: 801ms 148: learn: 0.0277695 total: 303ms remaining: 798ms 149: learn: 0.0276312 total: 304ms remaining: 796ms 150: learn: 0.0274551 total: 306ms remaining: 792ms 151: learn: 0.0274079 total: 308ms remaining: 789ms 152: learn: 0.0272539 total: 309ms remaining: 787ms 153: learn: 0.0269796 total: 311ms remaining: 784ms 154: learn: 0.0267719 total: 313ms remaining: 781ms 155: learn: 0.0267001 total: 315ms remaining: 779ms 156: learn: 0.0266334 total: 316ms remaining: 776ms 157: learn: 0.0263308 total: 318ms remaining: 773ms 158: learn: 0.0262010 total: 320ms remaining: 770ms 159: learn: 0.0261410 total: 321ms remaining: 767ms 160: learn: 0.0258417 total: 323ms remaining: 764ms 161: learn: 0.0256227 total: 324ms remaining: 761ms 162: learn: 0.0254378 total: 326ms remaining: 757ms 163: learn: 0.0252142 total: 327ms remaining: 754ms 164: learn: 0.0249072 total: 329ms remaining: 751ms 165: learn: 0.0246598 total: 331ms remaining: 749ms 166: learn: 0.0243290 total: 333ms remaining: 748ms 167: learn: 0.0242348 total: 335ms remaining: 745ms 168: learn: 0.0241851 total: 336ms remaining: 743ms 169: learn: 0.0241395 total: 338ms remaining: 740ms 170: learn: 0.0236888 total: 340ms remaining: 738ms 171: learn: 0.0234510 total: 342ms remaining: 735ms 172: learn: 0.0234127 total: 343ms remaining: 732ms 173: learn: 0.0233540 total: 345ms remaining: 730ms 174: learn: 0.0230286 total: 347ms remaining: 728ms 175: learn: 0.0230257 total: 349ms remaining: 725ms 176: learn: 0.0227587 total: 350ms remaining: 722ms 177: learn: 0.0227217 total: 352ms remaining: 720ms 178: learn: 0.0226835 total: 354ms remaining: 717ms 179: learn: 0.0226478 total: 355ms remaining: 714ms 180: learn: 0.0223114 total: 357ms remaining: 712ms 181: learn: 0.0219766 total: 359ms remaining: 709ms 182: learn: 0.0217573 total: 360ms remaining: 707ms 183: learn: 0.0216022 total: 362ms remaining: 705ms 184: learn: 0.0214122 total: 364ms remaining: 703ms 185: learn: 0.0212444 total: 366ms remaining: 701ms 186: learn: 0.0211535 total: 368ms remaining: 698ms 187: learn: 0.0209425 total: 369ms remaining: 696ms 188: learn: 0.0207644 total: 371ms remaining: 694ms 189: learn: 0.0206382 total: 373ms remaining: 692ms 190: learn: 0.0204955 total: 375ms remaining: 690ms 191: learn: 0.0204631 total: 377ms remaining: 687ms 192: learn: 0.0204582 total: 379ms remaining: 685ms 193: learn: 0.0204268 total: 380ms remaining: 682ms 194: learn: 0.0201896 total: 382ms remaining: 680ms 195: learn: 0.0200863 total: 384ms remaining: 677ms 196: learn: 0.0200572 total: 385ms remaining: 675ms 197: learn: 0.0199190 total: 387ms remaining: 673ms 198: learn: 0.0197450 total: 389ms remaining: 671ms 199: learn: 0.0196876 total: 392ms remaining: 669ms 200: learn: 0.0196592 total: 393ms remaining: 667ms 201: learn: 0.0195984 total: 395ms remaining: 665ms 202: learn: 0.0194019 total: 397ms remaining: 662ms 203: learn: 0.0193056 total: 399ms remaining: 660ms 204: learn: 0.0192469 total: 400ms remaining: 658ms 205: learn: 0.0192274 total: 402ms remaining: 655ms 206: learn: 0.0190149 total: 403ms remaining: 652ms 207: learn: 0.0189649 total: 404ms remaining: 649ms 208: learn: 0.0189390 total: 406ms remaining: 647ms 209: learn: 0.0188699 total: 408ms remaining: 644ms 210: learn: 0.0188156 total: 409ms remaining: 642ms 211: learn: 0.0185372 total: 411ms remaining: 639ms 212: learn: 0.0184046 total: 412ms remaining: 637ms 213: learn: 0.0183100 total: 414ms remaining: 634ms 214: learn: 0.0182862 total: 416ms remaining: 632ms 215: learn: 0.0182693 total: 417ms remaining: 629ms 216: learn: 0.0181887 total: 419ms remaining: 627ms 217: learn: 0.0179699 total: 420ms remaining: 625ms 218: learn: 0.0177719 total: 422ms remaining: 622ms 219: learn: 0.0176388 total: 424ms remaining: 620ms 220: learn: 0.0174648 total: 425ms remaining: 618ms 221: learn: 0.0173237 total: 427ms remaining: 616ms 222: learn: 0.0171527 total: 429ms remaining: 613ms 223: learn: 0.0170800 total: 431ms remaining: 612ms 224: learn: 0.0169395 total: 432ms remaining: 609ms 225: learn: 0.0168199 total: 434ms remaining: 607ms 226: learn: 0.0166587 total: 436ms remaining: 605ms 227: learn: 0.0165059 total: 438ms remaining: 603ms 228: learn: 0.0164143 total: 440ms remaining: 602ms 229: learn: 0.0162870 total: 442ms remaining: 599ms 230: learn: 0.0161440 total: 443ms remaining: 597ms 231: learn: 0.0160314 total: 445ms remaining: 594ms 232: learn: 0.0159143 total: 447ms remaining: 592ms 233: learn: 0.0158030 total: 448ms remaining: 590ms 234: learn: 0.0156758 total: 450ms remaining: 587ms 235: learn: 0.0155144 total: 451ms remaining: 585ms 236: learn: 0.0154055 total: 453ms remaining: 583ms 237: learn: 0.0152814 total: 455ms remaining: 581ms 238: learn: 0.0152122 total: 457ms remaining: 579ms 239: learn: 0.0151372 total: 458ms remaining: 577ms 240: learn: 0.0150202 total: 460ms remaining: 574ms 241: learn: 0.0149232 total: 462ms remaining: 572ms 242: learn: 0.0148735 total: 463ms remaining: 570ms 243: learn: 0.0147914 total: 465ms remaining: 568ms 244: learn: 0.0147350 total: 467ms remaining: 566ms 245: learn: 0.0146282 total: 468ms remaining: 563ms 246: learn: 0.0144846 total: 470ms remaining: 561ms 247: learn: 0.0144314 total: 472ms remaining: 559ms 248: learn: 0.0143898 total: 473ms remaining: 557ms 249: learn: 0.0143616 total: 475ms remaining: 554ms 250: learn: 0.0142707 total: 476ms remaining: 552ms 251: learn: 0.0142080 total: 478ms remaining: 550ms 252: learn: 0.0141047 total: 479ms remaining: 548ms 253: learn: 0.0140505 total: 481ms remaining: 546ms 254: learn: 0.0139484 total: 483ms remaining: 544ms 255: learn: 0.0139013 total: 485ms remaining: 541ms 256: learn: 0.0138073 total: 486ms remaining: 539ms 257: learn: 0.0137154 total: 488ms remaining: 537ms 258: learn: 0.0136137 total: 489ms remaining: 535ms 259: learn: 0.0136137 total: 500ms remaining: 542ms 260: learn: 0.0135111 total: 501ms remaining: 539ms 261: learn: 0.0134743 total: 503ms remaining: 537ms 262: learn: 0.0134159 total: 504ms remaining: 535ms 263: learn: 0.0133636 total: 506ms remaining: 533ms 264: learn: 0.0133031 total: 507ms remaining: 530ms 265: learn: 0.0132373 total: 509ms remaining: 528ms 266: learn: 0.0132371 total: 510ms remaining: 526ms 267: learn: 0.0131615 total: 512ms remaining: 524ms 268: learn: 0.0130980 total: 514ms remaining: 522ms 269: learn: 0.0129999 total: 516ms remaining: 520ms 270: learn: 0.0128982 total: 517ms remaining: 517ms 271: learn: 0.0128184 total: 519ms remaining: 515ms 272: learn: 0.0128184 total: 521ms remaining: 513ms 273: learn: 0.0128071 total: 522ms remaining: 511ms 274: learn: 0.0128069 total: 524ms remaining: 508ms 275: learn: 0.0128069 total: 525ms remaining: 506ms 276: learn: 0.0128068 total: 526ms remaining: 504ms 277: learn: 0.0128067 total: 528ms remaining: 501ms 278: learn: 0.0128066 total: 529ms remaining: 499ms 279: learn: 0.0128060 total: 531ms remaining: 497ms 280: learn: 0.0128058 total: 532ms remaining: 494ms 281: learn: 0.0128058 total: 533ms remaining: 492ms 282: learn: 0.0128058 total: 535ms remaining: 489ms 283: learn: 0.0128057 total: 536ms remaining: 487ms 284: learn: 0.0128056 total: 537ms remaining: 485ms 285: learn: 0.0128056 total: 539ms remaining: 482ms 286: learn: 0.0128057 total: 540ms remaining: 480ms 287: learn: 0.0128054 total: 542ms remaining: 478ms 288: learn: 0.0128054 total: 544ms remaining: 476ms 289: learn: 0.0128054 total: 545ms remaining: 474ms 290: learn: 0.0128054 total: 546ms remaining: 471ms 291: learn: 0.0128054 total: 548ms remaining: 469ms 292: learn: 0.0128054 total: 549ms remaining: 467ms 293: learn: 0.0128048 total: 551ms remaining: 464ms 294: learn: 0.0128047 total: 552ms remaining: 462ms 295: learn: 0.0128046 total: 553ms remaining: 460ms 296: learn: 0.0128046 total: 555ms remaining: 458ms 297: learn: 0.0128044 total: 556ms remaining: 455ms 298: learn: 0.0128043 total: 558ms remaining: 453ms 299: learn: 0.0128042 total: 559ms remaining: 451ms 300: learn: 0.0128038 total: 560ms remaining: 449ms 301: learn: 0.0128038 total: 562ms remaining: 446ms 302: learn: 0.0128038 total: 563ms remaining: 444ms 303: learn: 0.0128038 total: 565ms remaining: 442ms 304: learn: 0.0128037 total: 566ms remaining: 440ms 305: learn: 0.0128037 total: 567ms remaining: 437ms 306: learn: 0.0128036 total: 569ms remaining: 435ms 307: learn: 0.0128034 total: 570ms remaining: 433ms 308: learn: 0.0128030 total: 572ms remaining: 431ms 309: learn: 0.0128030 total: 573ms remaining: 429ms 310: learn: 0.0128028 total: 575ms remaining: 427ms 311: learn: 0.0128023 total: 576ms remaining: 425ms 312: learn: 0.0128022 total: 578ms remaining: 423ms 313: learn: 0.0128021 total: 579ms remaining: 421ms 314: learn: 0.0128019 total: 581ms remaining: 419ms 315: learn: 0.0128017 total: 582ms remaining: 416ms 316: learn: 0.0128017 total: 584ms remaining: 414ms 317: learn: 0.0128017 total: 585ms remaining: 412ms 318: learn: 0.0128017 total: 587ms remaining: 410ms 319: learn: 0.0128017 total: 588ms remaining: 408ms 320: learn: 0.0128016 total: 589ms remaining: 406ms 321: learn: 0.0128016 total: 591ms remaining: 404ms 322: learn: 0.0128015 total: 592ms remaining: 401ms 323: learn: 0.0128009 total: 593ms remaining: 399ms 324: learn: 0.0128008 total: 595ms remaining: 397ms 325: learn: 0.0128007 total: 596ms remaining: 395ms 326: learn: 0.0128007 total: 598ms remaining: 393ms 327: learn: 0.0128005 total: 599ms remaining: 391ms 328: learn: 0.0128005 total: 601ms remaining: 389ms 329: learn: 0.0128005 total: 632ms remaining: 406ms 330: learn: 0.0128004 total: 633ms remaining: 404ms 331: learn: 0.0128004 total: 635ms remaining: 401ms 332: learn: 0.0128004 total: 636ms remaining: 399ms 333: learn: 0.0128003 total: 637ms remaining: 397ms 334: learn: 0.0128001 total: 639ms remaining: 395ms 335: learn: 0.0128001 total: 640ms remaining: 392ms 336: learn: 0.0128000 total: 641ms remaining: 390ms 337: learn: 0.0127999 total: 643ms remaining: 388ms 338: learn: 0.0128000 total: 644ms remaining: 386ms 339: learn: 0.0127996 total: 646ms remaining: 384ms 340: learn: 0.0127996 total: 647ms remaining: 381ms 341: learn: 0.0127996 total: 648ms remaining: 379ms 342: learn: 0.0127995 total: 650ms remaining: 377ms 343: learn: 0.0127996 total: 651ms remaining: 375ms 344: learn: 0.0127995 total: 652ms remaining: 373ms 345: learn: 0.0127995 total: 654ms remaining: 370ms 346: learn: 0.0127995 total: 655ms remaining: 368ms 347: learn: 0.0127993 total: 657ms remaining: 366ms 348: learn: 0.0127991 total: 658ms remaining: 364ms 349: learn: 0.0127990 total: 659ms remaining: 362ms 350: learn: 0.0127990 total: 661ms remaining: 360ms 351: learn: 0.0127989 total: 662ms remaining: 357ms 352: learn: 0.0127990 total: 663ms remaining: 355ms 353: learn: 0.0127989 total: 665ms remaining: 353ms 354: learn: 0.0127989 total: 666ms remaining: 351ms 355: learn: 0.0127989 total: 667ms remaining: 349ms 356: learn: 0.0127988 total: 668ms remaining: 346ms 357: learn: 0.0127988 total: 670ms remaining: 344ms 358: learn: 0.0127987 total: 671ms remaining: 342ms 359: learn: 0.0127987 total: 673ms remaining: 340ms 360: learn: 0.0127985 total: 674ms remaining: 338ms 361: learn: 0.0127985 total: 676ms remaining: 336ms 362: learn: 0.0127985 total: 677ms remaining: 334ms 363: learn: 0.0127984 total: 679ms remaining: 332ms 364: learn: 0.0127983 total: 680ms remaining: 330ms 365: learn: 0.0127983 total: 681ms remaining: 328ms 366: learn: 0.0127982 total: 683ms remaining: 326ms 367: learn: 0.0127981 total: 684ms remaining: 323ms 368: learn: 0.0127979 total: 686ms remaining: 321ms 369: learn: 0.0127978 total: 687ms remaining: 319ms 370: learn: 0.0127977 total: 688ms remaining: 317ms 371: learn: 0.0127973 total: 690ms remaining: 315ms 372: learn: 0.0127973 total: 691ms remaining: 313ms 373: learn: 0.0127974 total: 693ms remaining: 311ms 374: learn: 0.0127973 total: 694ms remaining: 309ms 375: learn: 0.0127974 total: 696ms remaining: 307ms 376: learn: 0.0127973 total: 697ms remaining: 305ms 377: learn: 0.0127972 total: 699ms remaining: 303ms 378: learn: 0.0127968 total: 700ms remaining: 301ms 379: learn: 0.0127968 total: 702ms remaining: 299ms 380: learn: 0.0127967 total: 703ms remaining: 297ms 381: learn: 0.0127967 total: 705ms remaining: 295ms 382: learn: 0.0127967 total: 706ms remaining: 293ms 383: learn: 0.0127966 total: 708ms remaining: 291ms 384: learn: 0.0127966 total: 710ms remaining: 289ms 385: learn: 0.0127966 total: 711ms remaining: 287ms 386: learn: 0.0127966 total: 713ms remaining: 286ms 387: learn: 0.0127965 total: 715ms remaining: 284ms 388: learn: 0.0127962 total: 717ms remaining: 282ms 389: learn: 0.0127963 total: 718ms remaining: 280ms 390: learn: 0.0127962 total: 720ms remaining: 278ms 391: learn: 0.0127961 total: 721ms remaining: 276ms 392: learn: 0.0127958 total: 723ms remaining: 274ms 393: learn: 0.0127958 total: 724ms remaining: 272ms 394: learn: 0.0127958 total: 726ms remaining: 270ms 395: learn: 0.0127957 total: 728ms remaining: 268ms 396: learn: 0.0127953 total: 729ms remaining: 266ms 397: learn: 0.0127951 total: 731ms remaining: 264ms 398: learn: 0.0127951 total: 732ms remaining: 262ms 399: learn: 0.0127951 total: 734ms remaining: 260ms 400: learn: 0.0127949 total: 735ms remaining: 259ms 401: learn: 0.0127947 total: 737ms remaining: 257ms 402: learn: 0.0127728 total: 739ms remaining: 255ms 403: learn: 0.0127728 total: 741ms remaining: 253ms 404: learn: 0.0127527 total: 743ms remaining: 251ms 405: learn: 0.0127341 total: 748ms remaining: 251ms 406: learn: 0.0127341 total: 750ms remaining: 249ms 407: learn: 0.0127338 total: 751ms remaining: 247ms 408: learn: 0.0127337 total: 753ms remaining: 245ms 409: learn: 0.0127336 total: 754ms remaining: 243ms 410: learn: 0.0127331 total: 756ms remaining: 241ms 411: learn: 0.0127332 total: 757ms remaining: 239ms 412: learn: 0.0127328 total: 759ms remaining: 237ms 413: learn: 0.0127324 total: 760ms remaining: 235ms 414: learn: 0.0127324 total: 762ms remaining: 233ms 415: learn: 0.0127323 total: 763ms remaining: 231ms 416: learn: 0.0127322 total: 765ms remaining: 229ms 417: learn: 0.0127321 total: 767ms remaining: 227ms 418: learn: 0.0127321 total: 778ms remaining: 228ms 419: learn: 0.0127320 total: 779ms remaining: 226ms 420: learn: 0.0127319 total: 781ms remaining: 224ms 421: learn: 0.0127317 total: 782ms remaining: 222ms 422: learn: 0.0127316 total: 783ms remaining: 220ms 423: learn: 0.0127315 total: 785ms remaining: 218ms 424: learn: 0.0127288 total: 787ms remaining: 217ms 425: learn: 0.0127011 total: 788ms remaining: 215ms 426: learn: 0.0126929 total: 790ms remaining: 213ms 427: learn: 0.0126928 total: 792ms remaining: 211ms 428: learn: 0.0126897 total: 794ms remaining: 209ms 429: learn: 0.0126890 total: 795ms remaining: 207ms 430: learn: 0.0126641 total: 797ms remaining: 205ms 431: learn: 0.0126621 total: 799ms remaining: 204ms 432: learn: 0.0126618 total: 801ms remaining: 202ms 433: learn: 0.0126398 total: 803ms remaining: 200ms 434: learn: 0.0126214 total: 805ms remaining: 198ms 435: learn: 0.0126213 total: 807ms remaining: 196ms 436: learn: 0.0126038 total: 808ms remaining: 194ms 437: learn: 0.0126011 total: 810ms remaining: 192ms 438: learn: 0.0125017 total: 812ms remaining: 191ms 439: learn: 0.0124001 total: 814ms remaining: 189ms 440: learn: 0.0123194 total: 815ms remaining: 187ms 441: learn: 0.0122422 total: 817ms remaining: 185ms 442: learn: 0.0121909 total: 818ms remaining: 183ms 443: learn: 0.0121024 total: 820ms remaining: 181ms 444: learn: 0.0120892 total: 822ms remaining: 179ms 445: learn: 0.0119968 total: 824ms remaining: 177ms 446: learn: 0.0119909 total: 825ms remaining: 175ms 447: learn: 0.0119837 total: 827ms remaining: 174ms 448: learn: 0.0119767 total: 829ms remaining: 172ms 449: learn: 0.0119759 total: 831ms remaining: 170ms 450: learn: 0.0119074 total: 832ms remaining: 168ms 451: learn: 0.0119006 total: 834ms remaining: 166ms 452: learn: 0.0118948 total: 836ms remaining: 164ms 453: learn: 0.0118939 total: 838ms remaining: 162ms 454: learn: 0.0118792 total: 839ms remaining: 160ms 455: learn: 0.0118791 total: 841ms remaining: 159ms 456: learn: 0.0118659 total: 843ms remaining: 157ms 457: learn: 0.0118649 total: 844ms remaining: 155ms 458: learn: 0.0118041 total: 847ms remaining: 153ms 459: learn: 0.0117229 total: 848ms remaining: 151ms 460: learn: 0.0116718 total: 850ms remaining: 149ms 461: learn: 0.0116056 total: 852ms remaining: 148ms 462: learn: 0.0115993 total: 854ms remaining: 146ms 463: learn: 0.0115887 total: 856ms remaining: 144ms 464: learn: 0.0115881 total: 857ms remaining: 142ms 465: learn: 0.0115246 total: 860ms remaining: 140ms 466: learn: 0.0114815 total: 862ms remaining: 138ms 467: learn: 0.0114261 total: 863ms remaining: 137ms 468: learn: 0.0114099 total: 865ms remaining: 135ms 469: learn: 0.0113692 total: 867ms remaining: 133ms 470: learn: 0.0113452 total: 869ms remaining: 131ms 471: learn: 0.0113345 total: 870ms remaining: 129ms 472: learn: 0.0112992 total: 872ms remaining: 127ms 473: learn: 0.0112641 total: 874ms remaining: 125ms 474: learn: 0.0111935 total: 875ms remaining: 123ms 475: learn: 0.0110853 total: 877ms remaining: 122ms 476: learn: 0.0110244 total: 878ms remaining: 120ms 477: learn: 0.0110140 total: 880ms remaining: 118ms 478: learn: 0.0110035 total: 882ms remaining: 116ms 479: learn: 0.0109747 total: 883ms remaining: 114ms 480: learn: 0.0109109 total: 885ms remaining: 112ms 481: learn: 0.0108526 total: 887ms remaining: 110ms 482: learn: 0.0108403 total: 889ms remaining: 109ms 483: learn: 0.0107648 total: 891ms remaining: 107ms 484: learn: 0.0107125 total: 893ms remaining: 105ms 485: learn: 0.0106581 total: 894ms remaining: 103ms 486: learn: 0.0106471 total: 896ms remaining: 101ms 487: learn: 0.0105788 total: 898ms remaining: 99.3ms 488: learn: 0.0105530 total: 900ms remaining: 97.5ms 489: learn: 0.0104939 total: 901ms remaining: 95.6ms 490: learn: 0.0104355 total: 903ms remaining: 93.8ms 491: learn: 0.0103770 total: 905ms remaining: 92ms 492: learn: 0.0103578 total: 907ms remaining: 90.1ms 493: learn: 0.0103487 total: 909ms remaining: 88.3ms 494: learn: 0.0103007 total: 911ms remaining: 86.5ms 495: learn: 0.0102694 total: 912ms remaining: 84.6ms 496: learn: 0.0102302 total: 914ms remaining: 82.8ms 497: learn: 0.0101597 total: 916ms remaining: 80.9ms 498: learn: 0.0101595 total: 917ms remaining: 79ms 499: learn: 0.0101159 total: 919ms remaining: 77.2ms 500: learn: 0.0100841 total: 921ms remaining: 75.4ms 501: learn: 0.0100769 total: 923ms remaining: 73.5ms 502: learn: 0.0100403 total: 924ms remaining: 71.7ms 503: learn: 0.0099859 total: 926ms remaining: 69.8ms 504: learn: 0.0099785 total: 928ms remaining: 68ms 505: learn: 0.0099604 total: 929ms remaining: 66.1ms 506: learn: 0.0099283 total: 931ms remaining: 64.3ms 507: learn: 0.0098655 total: 932ms remaining: 62.4ms 508: learn: 0.0098556 total: 934ms remaining: 60.5ms 509: learn: 0.0098494 total: 936ms remaining: 58.7ms 510: learn: 0.0098446 total: 937ms remaining: 56.9ms 511: learn: 0.0098446 total: 939ms remaining: 55ms 512: learn: 0.0098169 total: 950ms remaining: 53.7ms 513: learn: 0.0098078 total: 953ms remaining: 51.9ms 514: learn: 0.0097987 total: 955ms remaining: 50ms 515: learn: 0.0097435 total: 957ms remaining: 48.2ms 516: learn: 0.0097349 total: 959ms remaining: 46.4ms 517: learn: 0.0096584 total: 960ms remaining: 44.5ms 518: learn: 0.0096097 total: 962ms remaining: 42.6ms 519: learn: 0.0095626 total: 964ms remaining: 40.8ms 520: learn: 0.0095143 total: 966ms remaining: 38.9ms 521: learn: 0.0094755 total: 967ms remaining: 37.1ms 522: learn: 0.0094430 total: 969ms remaining: 35.2ms 523: learn: 0.0093825 total: 970ms remaining: 33.3ms 524: learn: 0.0093247 total: 972ms remaining: 31.5ms 525: learn: 0.0092507 total: 973ms remaining: 29.6ms 526: learn: 0.0091831 total: 975ms remaining: 27.8ms 527: learn: 0.0091286 total: 977ms remaining: 25.9ms 528: learn: 0.0090992 total: 980ms remaining: 24.1ms 529: learn: 0.0090759 total: 982ms remaining: 22.2ms 530: learn: 0.0090320 total: 984ms remaining: 20.4ms 531: learn: 0.0089988 total: 986ms remaining: 18.5ms 532: learn: 0.0089524 total: 988ms remaining: 16.7ms 533: learn: 0.0089074 total: 990ms remaining: 14.8ms 534: learn: 0.0088658 total: 992ms remaining: 13ms 535: learn: 0.0088185 total: 994ms remaining: 11.1ms 536: learn: 0.0087800 total: 995ms remaining: 9.27ms 537: learn: 0.0087535 total: 997ms remaining: 7.41ms 538: learn: 0.0087226 total: 999ms remaining: 5.56ms 539: learn: 0.0086846 total: 1s remaining: 3.71ms 540: learn: 0.0086564 total: 1s remaining: 1.85ms 541: learn: 0.0086395 total: 1s remaining: 0us 0: learn: 0.5468908 total: 1.77ms remaining: 959ms 1: learn: 0.4578622 total: 3.42ms remaining: 925ms 2: learn: 0.3865623 total: 5.22ms remaining: 938ms 3: learn: 0.3464703 total: 7.01ms remaining: 943ms 4: learn: 0.3162576 total: 8.89ms remaining: 955ms 5: learn: 0.2926005 total: 10.6ms remaining: 949ms 6: learn: 0.2782276 total: 12.2ms remaining: 936ms 7: learn: 0.2633169 total: 13.8ms remaining: 924ms 8: learn: 0.2553097 total: 15.4ms remaining: 914ms 9: learn: 0.2428444 total: 17ms remaining: 905ms 10: learn: 0.2347012 total: 18.5ms remaining: 893ms 11: learn: 0.2230099 total: 20.2ms remaining: 891ms 12: learn: 0.2171597 total: 21.7ms remaining: 885ms 13: learn: 0.2131791 total: 23.3ms remaining: 879ms 14: learn: 0.2083774 total: 24.9ms remaining: 876ms 15: learn: 0.2033750 total: 26.5ms remaining: 870ms 16: learn: 0.1988835 total: 27.9ms remaining: 863ms 17: learn: 0.1919722 total: 29.4ms remaining: 856ms 18: learn: 0.1861987 total: 30.9ms remaining: 850ms 19: learn: 0.1832602 total: 32.4ms remaining: 847ms 20: learn: 0.1789536 total: 33.9ms remaining: 841ms 21: learn: 0.1748499 total: 35.6ms remaining: 841ms 22: learn: 0.1710832 total: 37.7ms remaining: 852ms 23: learn: 0.1667124 total: 39.6ms remaining: 855ms 24: learn: 0.1635775 total: 41.3ms remaining: 854ms 25: learn: 0.1601955 total: 42.9ms remaining: 851ms 26: learn: 0.1578862 total: 44.8ms remaining: 854ms 27: learn: 0.1536640 total: 46.6ms remaining: 855ms 28: learn: 0.1510426 total: 48.4ms remaining: 856ms 29: learn: 0.1486285 total: 50.2ms remaining: 857ms 30: learn: 0.1442159 total: 51.8ms remaining: 854ms 31: learn: 0.1402550 total: 53.4ms remaining: 852ms 32: learn: 0.1394748 total: 55.2ms remaining: 851ms 33: learn: 0.1363015 total: 56.8ms remaining: 848ms 34: learn: 0.1339865 total: 58.3ms remaining: 845ms 35: learn: 0.1315227 total: 59.9ms remaining: 842ms 36: learn: 0.1310664 total: 61.3ms remaining: 837ms 37: learn: 0.1309319 total: 63.1ms remaining: 837ms 38: learn: 0.1299522 total: 64.7ms remaining: 835ms 39: learn: 0.1272185 total: 66.5ms remaining: 835ms 40: learn: 0.1240670 total: 68.4ms remaining: 836ms 41: learn: 0.1237492 total: 70.1ms remaining: 835ms 42: learn: 0.1200190 total: 71.7ms remaining: 832ms 43: learn: 0.1173104 total: 73.2ms remaining: 829ms 44: learn: 0.1168364 total: 75.2ms remaining: 830ms 45: learn: 0.1156497 total: 76.8ms remaining: 828ms 46: learn: 0.1148716 total: 78.5ms remaining: 827ms 47: learn: 0.1147085 total: 80.1ms remaining: 824ms 48: learn: 0.1107648 total: 81.7ms remaining: 822ms 49: learn: 0.1100461 total: 83.3ms remaining: 820ms 50: learn: 0.1088425 total: 84.9ms remaining: 817ms 51: learn: 0.1086502 total: 86.6ms remaining: 816ms 52: learn: 0.1059847 total: 88.1ms remaining: 813ms 53: learn: 0.1031516 total: 89.7ms remaining: 810ms 54: learn: 0.1025943 total: 91.1ms remaining: 807ms 55: learn: 0.1019146 total: 92.7ms remaining: 805ms 56: learn: 0.0996610 total: 94.4ms remaining: 803ms 57: learn: 0.0969921 total: 96.1ms remaining: 802ms 58: learn: 0.0940507 total: 98.1ms remaining: 803ms 59: learn: 0.0939873 total: 99.8ms remaining: 802ms 60: learn: 0.0901594 total: 102ms remaining: 800ms 61: learn: 0.0892996 total: 103ms remaining: 797ms 62: learn: 0.0885337 total: 104ms remaining: 794ms 63: learn: 0.0877932 total: 106ms remaining: 792ms 64: learn: 0.0853710 total: 108ms remaining: 790ms 65: learn: 0.0852997 total: 109ms remaining: 788ms 66: learn: 0.0843296 total: 111ms remaining: 785ms 67: learn: 0.0829407 total: 112ms remaining: 783ms 68: learn: 0.0824438 total: 114ms remaining: 781ms 69: learn: 0.0799699 total: 115ms remaining: 778ms 70: learn: 0.0795065 total: 117ms remaining: 776ms 71: learn: 0.0783406 total: 118ms remaining: 774ms 72: learn: 0.0768417 total: 120ms remaining: 771ms 73: learn: 0.0749401 total: 122ms remaining: 768ms 74: learn: 0.0746843 total: 123ms remaining: 767ms 75: learn: 0.0746329 total: 125ms remaining: 766ms 76: learn: 0.0745841 total: 127ms remaining: 765ms 77: learn: 0.0745382 total: 128ms remaining: 764ms 78: learn: 0.0744945 total: 130ms remaining: 764ms 79: learn: 0.0744532 total: 132ms remaining: 762ms 80: learn: 0.0744137 total: 134ms remaining: 762ms 81: learn: 0.0743761 total: 135ms remaining: 760ms 82: learn: 0.0743403 total: 137ms remaining: 759ms 83: learn: 0.0743064 total: 139ms remaining: 758ms 84: learn: 0.0733659 total: 141ms remaining: 756ms 85: learn: 0.0730162 total: 142ms remaining: 755ms 86: learn: 0.0723748 total: 144ms remaining: 755ms 87: learn: 0.0723406 total: 146ms remaining: 753ms 88: learn: 0.0711362 total: 147ms remaining: 750ms 89: learn: 0.0711046 total: 149ms remaining: 748ms 90: learn: 0.0710754 total: 150ms remaining: 746ms 91: learn: 0.0710477 total: 152ms remaining: 743ms 92: learn: 0.0710212 total: 154ms remaining: 742ms 93: learn: 0.0709959 total: 155ms remaining: 740ms 94: learn: 0.0709699 total: 157ms remaining: 739ms 95: learn: 0.0709465 total: 159ms remaining: 738ms 96: learn: 0.0702222 total: 161ms remaining: 736ms 97: learn: 0.0687564 total: 162ms remaining: 735ms 98: learn: 0.0683721 total: 164ms remaining: 733ms 99: learn: 0.0667459 total: 166ms remaining: 732ms 100: learn: 0.0664506 total: 167ms remaining: 730ms 101: learn: 0.0656518 total: 169ms remaining: 729ms 102: learn: 0.0640049 total: 171ms remaining: 728ms 103: learn: 0.0638163 total: 173ms remaining: 728ms 104: learn: 0.0629013 total: 174ms remaining: 726ms 105: learn: 0.0618966 total: 176ms remaining: 724ms 106: learn: 0.0607090 total: 178ms remaining: 722ms 107: learn: 0.0599650 total: 179ms remaining: 720ms 108: learn: 0.0589865 total: 181ms remaining: 718ms 109: learn: 0.0577390 total: 182ms remaining: 716ms 110: learn: 0.0571262 total: 184ms remaining: 714ms 111: learn: 0.0569731 total: 186ms remaining: 712ms 112: learn: 0.0560623 total: 187ms remaining: 711ms 113: learn: 0.0550864 total: 189ms remaining: 710ms 114: learn: 0.0542160 total: 191ms remaining: 708ms 115: learn: 0.0536780 total: 193ms remaining: 707ms 116: learn: 0.0531283 total: 194ms remaining: 705ms 117: learn: 0.0528588 total: 196ms remaining: 703ms 118: learn: 0.0523803 total: 197ms remaining: 702ms 119: learn: 0.0516176 total: 199ms remaining: 700ms 120: learn: 0.0512111 total: 200ms remaining: 697ms 121: learn: 0.0503060 total: 202ms remaining: 695ms 122: learn: 0.0498376 total: 203ms remaining: 692ms 123: learn: 0.0492665 total: 205ms remaining: 691ms 124: learn: 0.0490950 total: 207ms remaining: 689ms 125: learn: 0.0487577 total: 208ms remaining: 687ms 126: learn: 0.0480404 total: 210ms remaining: 685ms 127: learn: 0.0475738 total: 211ms remaining: 683ms 128: learn: 0.0472018 total: 213ms remaining: 681ms 129: learn: 0.0468656 total: 215ms remaining: 680ms 130: learn: 0.0466925 total: 216ms remaining: 679ms 131: learn: 0.0465354 total: 221ms remaining: 687ms 132: learn: 0.0457748 total: 223ms remaining: 686ms 133: learn: 0.0450133 total: 225ms remaining: 685ms 134: learn: 0.0447048 total: 227ms remaining: 684ms 135: learn: 0.0435328 total: 229ms remaining: 682ms 136: learn: 0.0433060 total: 230ms remaining: 681ms 137: learn: 0.0427765 total: 232ms remaining: 679ms 138: learn: 0.0417784 total: 234ms remaining: 678ms 139: learn: 0.0416249 total: 236ms remaining: 676ms 140: learn: 0.0413205 total: 237ms remaining: 674ms 141: learn: 0.0411232 total: 239ms remaining: 672ms 142: learn: 0.0407373 total: 240ms remaining: 670ms 143: learn: 0.0403768 total: 242ms remaining: 668ms 144: learn: 0.0402613 total: 243ms remaining: 666ms 145: learn: 0.0400430 total: 245ms remaining: 664ms 146: learn: 0.0397722 total: 246ms remaining: 662ms 147: learn: 0.0390328 total: 249ms remaining: 662ms 148: learn: 0.0389967 total: 250ms remaining: 661ms 149: learn: 0.0389658 total: 252ms remaining: 659ms 150: learn: 0.0381285 total: 253ms remaining: 656ms 151: learn: 0.0379796 total: 255ms remaining: 654ms 152: learn: 0.0376523 total: 257ms remaining: 653ms 153: learn: 0.0372313 total: 258ms remaining: 651ms 154: learn: 0.0366888 total: 260ms remaining: 649ms 155: learn: 0.0366564 total: 261ms remaining: 646ms 156: learn: 0.0366329 total: 263ms remaining: 644ms 157: learn: 0.0366063 total: 264ms remaining: 642ms 158: learn: 0.0365031 total: 266ms remaining: 641ms 159: learn: 0.0363580 total: 268ms remaining: 639ms 160: learn: 0.0359364 total: 269ms remaining: 637ms 161: learn: 0.0351734 total: 271ms remaining: 635ms 162: learn: 0.0349152 total: 272ms remaining: 633ms 163: learn: 0.0346569 total: 274ms remaining: 631ms 164: learn: 0.0345198 total: 275ms remaining: 629ms 165: learn: 0.0344049 total: 277ms remaining: 627ms 166: learn: 0.0338769 total: 279ms remaining: 626ms 167: learn: 0.0335232 total: 281ms remaining: 625ms 168: learn: 0.0333747 total: 282ms remaining: 624ms 169: learn: 0.0333012 total: 284ms remaining: 622ms 170: learn: 0.0331501 total: 286ms remaining: 620ms 171: learn: 0.0325763 total: 287ms remaining: 618ms 172: learn: 0.0325028 total: 289ms remaining: 616ms 173: learn: 0.0324793 total: 291ms remaining: 615ms 174: learn: 0.0320614 total: 292ms remaining: 613ms 175: learn: 0.0315420 total: 294ms remaining: 611ms 176: learn: 0.0312260 total: 296ms remaining: 609ms 177: learn: 0.0308888 total: 297ms remaining: 608ms 178: learn: 0.0304593 total: 299ms remaining: 605ms 179: learn: 0.0302008 total: 300ms remaining: 603ms 180: learn: 0.0301753 total: 302ms remaining: 602ms 181: learn: 0.0297250 total: 303ms remaining: 600ms 182: learn: 0.0297070 total: 305ms remaining: 599ms 183: learn: 0.0296879 total: 307ms remaining: 598ms 184: learn: 0.0295479 total: 309ms remaining: 596ms 185: learn: 0.0292720 total: 311ms remaining: 595ms 186: learn: 0.0289721 total: 313ms remaining: 594ms 187: learn: 0.0289540 total: 314ms remaining: 592ms 188: learn: 0.0285472 total: 316ms remaining: 590ms 189: learn: 0.0284460 total: 318ms remaining: 589ms 190: learn: 0.0282613 total: 319ms remaining: 587ms 191: learn: 0.0282449 total: 321ms remaining: 585ms 192: learn: 0.0281882 total: 323ms remaining: 584ms 193: learn: 0.0280926 total: 325ms remaining: 582ms 194: learn: 0.0279306 total: 326ms remaining: 581ms 195: learn: 0.0274539 total: 328ms remaining: 579ms 196: learn: 0.0271848 total: 330ms remaining: 577ms 197: learn: 0.0269323 total: 331ms remaining: 575ms 198: learn: 0.0265646 total: 333ms remaining: 574ms 199: learn: 0.0264734 total: 334ms remaining: 572ms 200: learn: 0.0264309 total: 336ms remaining: 570ms 201: learn: 0.0264161 total: 338ms remaining: 568ms 202: learn: 0.0263698 total: 339ms remaining: 566ms 203: learn: 0.0263573 total: 341ms remaining: 564ms 204: learn: 0.0261210 total: 342ms remaining: 562ms 205: learn: 0.0260418 total: 344ms remaining: 560ms 206: learn: 0.0259628 total: 345ms remaining: 559ms 207: learn: 0.0256136 total: 347ms remaining: 557ms 208: learn: 0.0254353 total: 348ms remaining: 555ms 209: learn: 0.0252001 total: 350ms remaining: 553ms 210: learn: 0.0251651 total: 351ms remaining: 551ms 211: learn: 0.0249981 total: 353ms remaining: 550ms 212: learn: 0.0249624 total: 355ms remaining: 548ms 213: learn: 0.0248256 total: 356ms remaining: 546ms 214: learn: 0.0247270 total: 358ms remaining: 544ms 215: learn: 0.0245691 total: 359ms remaining: 542ms 216: learn: 0.0245571 total: 361ms remaining: 540ms 217: learn: 0.0243308 total: 362ms remaining: 538ms 218: learn: 0.0241462 total: 364ms remaining: 537ms 219: learn: 0.0240342 total: 365ms remaining: 535ms 220: learn: 0.0239780 total: 367ms remaining: 533ms 221: learn: 0.0239343 total: 369ms remaining: 531ms 222: learn: 0.0237052 total: 370ms remaining: 529ms 223: learn: 0.0236621 total: 372ms remaining: 528ms 224: learn: 0.0234992 total: 373ms remaining: 526ms 225: learn: 0.0234590 total: 375ms remaining: 524ms 226: learn: 0.0231772 total: 376ms remaining: 522ms 227: learn: 0.0231042 total: 378ms remaining: 520ms 228: learn: 0.0230617 total: 379ms remaining: 518ms 229: learn: 0.0230322 total: 381ms remaining: 517ms 230: learn: 0.0229812 total: 383ms remaining: 515ms 231: learn: 0.0227854 total: 384ms remaining: 514ms 232: learn: 0.0225791 total: 386ms remaining: 512ms 233: learn: 0.0225686 total: 388ms remaining: 510ms 234: learn: 0.0225238 total: 389ms remaining: 509ms 235: learn: 0.0224340 total: 391ms remaining: 507ms 236: learn: 0.0223763 total: 393ms remaining: 506ms 237: learn: 0.0220070 total: 395ms remaining: 504ms 238: learn: 0.0218782 total: 397ms remaining: 503ms 239: learn: 0.0216440 total: 399ms remaining: 502ms 240: learn: 0.0216069 total: 401ms remaining: 500ms 241: learn: 0.0213543 total: 402ms remaining: 499ms 242: learn: 0.0213280 total: 404ms remaining: 497ms 243: learn: 0.0212160 total: 405ms remaining: 495ms 244: learn: 0.0212059 total: 407ms remaining: 494ms 245: learn: 0.0210016 total: 409ms remaining: 492ms 246: learn: 0.0209794 total: 410ms remaining: 490ms 247: learn: 0.0208154 total: 412ms remaining: 488ms 248: learn: 0.0206123 total: 413ms remaining: 487ms 249: learn: 0.0204407 total: 415ms remaining: 485ms 250: learn: 0.0202847 total: 417ms remaining: 483ms 251: learn: 0.0201157 total: 419ms remaining: 482ms 252: learn: 0.0200505 total: 420ms remaining: 480ms 253: learn: 0.0199922 total: 422ms remaining: 478ms 254: learn: 0.0199833 total: 423ms remaining: 477ms 255: learn: 0.0198184 total: 425ms remaining: 475ms 256: learn: 0.0196724 total: 427ms remaining: 473ms 257: learn: 0.0195811 total: 428ms remaining: 471ms 258: learn: 0.0194601 total: 430ms remaining: 469ms 259: learn: 0.0193426 total: 431ms remaining: 468ms 260: learn: 0.0192320 total: 433ms remaining: 466ms 261: learn: 0.0190952 total: 434ms remaining: 464ms 262: learn: 0.0188896 total: 436ms remaining: 462ms 263: learn: 0.0187309 total: 437ms remaining: 460ms 264: learn: 0.0186170 total: 439ms remaining: 459ms 265: learn: 0.0184901 total: 440ms remaining: 457ms 266: learn: 0.0182357 total: 443ms remaining: 456ms 267: learn: 0.0180836 total: 452ms remaining: 462ms 268: learn: 0.0180773 total: 453ms remaining: 460ms 269: learn: 0.0180760 total: 455ms remaining: 458ms 270: learn: 0.0180734 total: 456ms remaining: 456ms 271: learn: 0.0180716 total: 458ms remaining: 454ms 272: learn: 0.0180694 total: 459ms remaining: 452ms 273: learn: 0.0180672 total: 461ms remaining: 450ms 274: learn: 0.0179101 total: 462ms remaining: 449ms 275: learn: 0.0178022 total: 464ms remaining: 447ms 276: learn: 0.0178002 total: 465ms remaining: 445ms 277: learn: 0.0177983 total: 466ms remaining: 443ms 278: learn: 0.0177952 total: 468ms remaining: 441ms 279: learn: 0.0177921 total: 469ms remaining: 439ms 280: learn: 0.0177898 total: 471ms remaining: 437ms 281: learn: 0.0177628 total: 473ms remaining: 436ms 282: learn: 0.0176992 total: 475ms remaining: 434ms 283: learn: 0.0175834 total: 476ms remaining: 433ms 284: learn: 0.0175805 total: 478ms remaining: 431ms 285: learn: 0.0175696 total: 479ms remaining: 429ms 286: learn: 0.0175402 total: 481ms remaining: 427ms 287: learn: 0.0173484 total: 482ms remaining: 425ms 288: learn: 0.0173230 total: 484ms remaining: 423ms 289: learn: 0.0172952 total: 485ms remaining: 422ms 290: learn: 0.0172583 total: 487ms remaining: 420ms 291: learn: 0.0172244 total: 488ms remaining: 418ms 292: learn: 0.0172046 total: 490ms remaining: 416ms 293: learn: 0.0169912 total: 491ms remaining: 414ms 294: learn: 0.0168073 total: 493ms remaining: 412ms 295: learn: 0.0167113 total: 494ms remaining: 411ms 296: learn: 0.0165368 total: 496ms remaining: 409ms 297: learn: 0.0163828 total: 497ms remaining: 407ms 298: learn: 0.0163731 total: 499ms remaining: 405ms 299: learn: 0.0162207 total: 500ms remaining: 404ms 300: learn: 0.0162058 total: 502ms remaining: 402ms 301: learn: 0.0161679 total: 504ms remaining: 400ms 302: learn: 0.0161339 total: 506ms remaining: 399ms 303: learn: 0.0161254 total: 507ms remaining: 397ms 304: learn: 0.0160283 total: 509ms remaining: 395ms 305: learn: 0.0158764 total: 510ms remaining: 394ms 306: learn: 0.0158167 total: 512ms remaining: 392ms 307: learn: 0.0157625 total: 514ms remaining: 390ms 308: learn: 0.0157440 total: 516ms remaining: 389ms 309: learn: 0.0157271 total: 517ms remaining: 387ms 310: learn: 0.0156995 total: 519ms remaining: 385ms 311: learn: 0.0156606 total: 520ms remaining: 384ms 312: learn: 0.0156351 total: 522ms remaining: 382ms 313: learn: 0.0156098 total: 524ms remaining: 380ms 314: learn: 0.0155859 total: 525ms remaining: 379ms 315: learn: 0.0154920 total: 527ms remaining: 377ms 316: learn: 0.0154700 total: 528ms remaining: 375ms 317: learn: 0.0154185 total: 530ms remaining: 373ms 318: learn: 0.0154049 total: 532ms remaining: 372ms 319: learn: 0.0153910 total: 534ms remaining: 370ms 320: learn: 0.0153044 total: 535ms remaining: 369ms 321: learn: 0.0152905 total: 537ms remaining: 367ms 322: learn: 0.0152710 total: 539ms remaining: 365ms 323: learn: 0.0151382 total: 540ms remaining: 364ms 324: learn: 0.0150811 total: 542ms remaining: 362ms 325: learn: 0.0150601 total: 543ms remaining: 360ms 326: learn: 0.0150403 total: 545ms remaining: 358ms 327: learn: 0.0150304 total: 547ms remaining: 357ms 328: learn: 0.0148893 total: 548ms remaining: 355ms 329: learn: 0.0148681 total: 550ms remaining: 353ms 330: learn: 0.0148630 total: 552ms remaining: 352ms 331: learn: 0.0148312 total: 553ms remaining: 350ms 332: learn: 0.0148174 total: 555ms remaining: 348ms 333: learn: 0.0148054 total: 556ms remaining: 347ms 334: learn: 0.0148053 total: 558ms remaining: 345ms 335: learn: 0.0147690 total: 559ms remaining: 343ms 336: learn: 0.0147570 total: 561ms remaining: 341ms 337: learn: 0.0147441 total: 563ms remaining: 340ms 338: learn: 0.0146566 total: 564ms remaining: 338ms 339: learn: 0.0146517 total: 566ms remaining: 336ms 340: learn: 0.0146274 total: 568ms remaining: 335ms 341: learn: 0.0146103 total: 582ms remaining: 341ms 342: learn: 0.0145334 total: 584ms remaining: 339ms 343: learn: 0.0144821 total: 586ms remaining: 337ms 344: learn: 0.0144628 total: 587ms remaining: 335ms 345: learn: 0.0143249 total: 589ms remaining: 333ms 346: learn: 0.0142048 total: 590ms remaining: 332ms 347: learn: 0.0141832 total: 592ms remaining: 330ms 348: learn: 0.0141672 total: 594ms remaining: 328ms 349: learn: 0.0140526 total: 596ms remaining: 327ms 350: learn: 0.0139316 total: 598ms remaining: 325ms 351: learn: 0.0138569 total: 599ms remaining: 324ms 352: learn: 0.0138131 total: 601ms remaining: 322ms 353: learn: 0.0137983 total: 603ms remaining: 320ms 354: learn: 0.0137301 total: 604ms remaining: 318ms 355: learn: 0.0136951 total: 606ms remaining: 317ms 356: learn: 0.0136787 total: 607ms remaining: 315ms 357: learn: 0.0136155 total: 609ms remaining: 313ms 358: learn: 0.0135977 total: 611ms remaining: 311ms 359: learn: 0.0134934 total: 612ms remaining: 310ms 360: learn: 0.0134807 total: 614ms remaining: 308ms 361: learn: 0.0134713 total: 616ms remaining: 306ms 362: learn: 0.0134602 total: 617ms remaining: 304ms 363: learn: 0.0133938 total: 619ms remaining: 302ms 364: learn: 0.0133937 total: 620ms remaining: 301ms 365: learn: 0.0133792 total: 622ms remaining: 299ms 366: learn: 0.0133663 total: 623ms remaining: 297ms 367: learn: 0.0133573 total: 625ms remaining: 296ms 368: learn: 0.0133422 total: 627ms remaining: 294ms 369: learn: 0.0133307 total: 628ms remaining: 292ms 370: learn: 0.0133223 total: 630ms remaining: 290ms 371: learn: 0.0132889 total: 631ms remaining: 288ms 372: learn: 0.0132810 total: 633ms remaining: 287ms 373: learn: 0.0132732 total: 634ms remaining: 285ms 374: learn: 0.0132461 total: 636ms remaining: 283ms 375: learn: 0.0131935 total: 637ms remaining: 281ms 376: learn: 0.0131186 total: 639ms remaining: 280ms 377: learn: 0.0131106 total: 640ms remaining: 278ms 378: learn: 0.0129995 total: 642ms remaining: 276ms 379: learn: 0.0128910 total: 643ms remaining: 274ms 380: learn: 0.0128078 total: 645ms remaining: 273ms 381: learn: 0.0127471 total: 647ms remaining: 271ms 382: learn: 0.0126330 total: 648ms remaining: 269ms 383: learn: 0.0126261 total: 649ms remaining: 267ms 384: learn: 0.0126192 total: 651ms remaining: 265ms 385: learn: 0.0125314 total: 653ms remaining: 264ms 386: learn: 0.0125247 total: 655ms remaining: 262ms 387: learn: 0.0124292 total: 657ms remaining: 261ms 388: learn: 0.0122919 total: 659ms remaining: 259ms 389: learn: 0.0121787 total: 660ms remaining: 257ms 390: learn: 0.0121662 total: 662ms remaining: 256ms 391: learn: 0.0121014 total: 663ms remaining: 254ms 392: learn: 0.0120616 total: 665ms remaining: 252ms 393: learn: 0.0120265 total: 667ms remaining: 250ms 394: learn: 0.0119627 total: 668ms remaining: 249ms 395: learn: 0.0118898 total: 670ms remaining: 247ms 396: learn: 0.0117998 total: 672ms remaining: 245ms 397: learn: 0.0117753 total: 673ms remaining: 244ms 398: learn: 0.0116866 total: 674ms remaining: 242ms 399: learn: 0.0116342 total: 676ms remaining: 240ms 400: learn: 0.0115784 total: 678ms remaining: 238ms 401: learn: 0.0114965 total: 679ms remaining: 237ms 402: learn: 0.0114328 total: 681ms remaining: 235ms 403: learn: 0.0114144 total: 682ms remaining: 233ms 404: learn: 0.0113776 total: 684ms remaining: 232ms 405: learn: 0.0113560 total: 686ms remaining: 230ms 406: learn: 0.0113078 total: 688ms remaining: 228ms 407: learn: 0.0112610 total: 690ms remaining: 227ms 408: learn: 0.0112035 total: 692ms remaining: 225ms 409: learn: 0.0111563 total: 693ms remaining: 223ms 410: learn: 0.0111324 total: 695ms remaining: 222ms 411: learn: 0.0110600 total: 697ms remaining: 220ms 412: learn: 0.0110490 total: 699ms remaining: 218ms 413: learn: 0.0110159 total: 700ms remaining: 217ms 414: learn: 0.0109308 total: 702ms remaining: 215ms 415: learn: 0.0108879 total: 704ms remaining: 213ms 416: learn: 0.0108858 total: 705ms remaining: 211ms 417: learn: 0.0108756 total: 706ms remaining: 210ms 418: learn: 0.0108646 total: 708ms remaining: 208ms 419: learn: 0.0107935 total: 709ms remaining: 206ms 420: learn: 0.0107844 total: 711ms remaining: 204ms 421: learn: 0.0107193 total: 712ms remaining: 203ms 422: learn: 0.0106698 total: 714ms remaining: 201ms 423: learn: 0.0106185 total: 716ms remaining: 199ms 424: learn: 0.0105835 total: 717ms remaining: 197ms 425: learn: 0.0105834 total: 719ms remaining: 196ms 426: learn: 0.0105449 total: 720ms remaining: 194ms 427: learn: 0.0104805 total: 721ms remaining: 192ms 428: learn: 0.0104479 total: 723ms remaining: 190ms 429: learn: 0.0103968 total: 724ms remaining: 189ms 430: learn: 0.0103669 total: 726ms remaining: 187ms 431: learn: 0.0103615 total: 728ms remaining: 185ms 432: learn: 0.0103403 total: 729ms remaining: 184ms 433: learn: 0.0103222 total: 731ms remaining: 182ms 434: learn: 0.0102745 total: 732ms remaining: 180ms 435: learn: 0.0102531 total: 734ms remaining: 178ms 436: learn: 0.0102467 total: 736ms remaining: 177ms 437: learn: 0.0102461 total: 737ms remaining: 175ms 438: learn: 0.0102461 total: 738ms remaining: 173ms 439: learn: 0.0102461 total: 740ms remaining: 171ms 440: learn: 0.0102461 total: 741ms remaining: 170ms 441: learn: 0.0102461 total: 742ms remaining: 168ms 442: learn: 0.0102434 total: 744ms remaining: 166ms 443: learn: 0.0101994 total: 745ms remaining: 165ms 444: learn: 0.0101945 total: 747ms remaining: 163ms 445: learn: 0.0101775 total: 748ms remaining: 161ms 446: learn: 0.0101773 total: 750ms remaining: 159ms 447: learn: 0.0101773 total: 751ms remaining: 158ms 448: learn: 0.0101762 total: 753ms remaining: 156ms 449: learn: 0.0101762 total: 754ms remaining: 154ms 450: learn: 0.0101738 total: 755ms remaining: 152ms 451: learn: 0.0101579 total: 757ms remaining: 151ms 452: learn: 0.0101576 total: 758ms remaining: 149ms 453: learn: 0.0101565 total: 760ms remaining: 147ms 454: learn: 0.0101539 total: 762ms remaining: 146ms 455: learn: 0.0101538 total: 763ms remaining: 144ms 456: learn: 0.0101434 total: 765ms remaining: 142ms 457: learn: 0.0101433 total: 766ms remaining: 140ms 458: learn: 0.0101433 total: 767ms remaining: 139ms 459: learn: 0.0101433 total: 769ms remaining: 137ms 460: learn: 0.0101432 total: 770ms remaining: 135ms 461: learn: 0.0101433 total: 772ms remaining: 134ms 462: learn: 0.0101430 total: 773ms remaining: 132ms 463: learn: 0.0101342 total: 775ms remaining: 130ms 464: learn: 0.0101304 total: 776ms remaining: 129ms 465: learn: 0.0101180 total: 778ms remaining: 127ms 466: learn: 0.0100807 total: 780ms remaining: 125ms 467: learn: 0.0100340 total: 781ms remaining: 124ms 468: learn: 0.0099760 total: 783ms remaining: 122ms 469: learn: 0.0099758 total: 785ms remaining: 120ms 470: learn: 0.0099681 total: 786ms remaining: 119ms 471: learn: 0.0099535 total: 788ms remaining: 117ms 472: learn: 0.0099447 total: 790ms remaining: 115ms 473: learn: 0.0099332 total: 791ms remaining: 114ms 474: learn: 0.0099333 total: 793ms remaining: 112ms 475: learn: 0.0099329 total: 794ms remaining: 110ms 476: learn: 0.0099328 total: 796ms remaining: 108ms 477: learn: 0.0099256 total: 797ms remaining: 107ms 478: learn: 0.0099251 total: 799ms remaining: 105ms 479: learn: 0.0099250 total: 802ms remaining: 104ms 480: learn: 0.0099249 total: 805ms remaining: 102ms 481: learn: 0.0099232 total: 807ms remaining: 100ms 482: learn: 0.0099232 total: 809ms remaining: 98.8ms 483: learn: 0.0099231 total: 810ms remaining: 97.1ms 484: learn: 0.0099231 total: 812ms remaining: 95.5ms 485: learn: 0.0099230 total: 814ms remaining: 93.8ms 486: learn: 0.0099224 total: 816ms remaining: 92.2ms 487: learn: 0.0099139 total: 819ms remaining: 90.6ms 488: learn: 0.0098999 total: 821ms remaining: 89ms 489: learn: 0.0098813 total: 824ms remaining: 87.4ms 490: learn: 0.0098642 total: 826ms remaining: 85.8ms 491: learn: 0.0098641 total: 827ms remaining: 84.1ms 492: learn: 0.0098640 total: 829ms remaining: 82.4ms 493: learn: 0.0098639 total: 831ms remaining: 80.7ms 494: learn: 0.0098535 total: 833ms remaining: 79.1ms 495: learn: 0.0098106 total: 835ms remaining: 77.4ms 496: learn: 0.0098106 total: 836ms remaining: 75.7ms 497: learn: 0.0098015 total: 838ms remaining: 74.1ms 498: learn: 0.0098014 total: 840ms remaining: 72.4ms 499: learn: 0.0097932 total: 841ms remaining: 70.7ms 500: learn: 0.0097577 total: 843ms remaining: 69ms 501: learn: 0.0097035 total: 845ms remaining: 67.3ms 502: learn: 0.0096456 total: 846ms remaining: 65.6ms 503: learn: 0.0096451 total: 848ms remaining: 63.9ms 504: learn: 0.0096299 total: 856ms remaining: 62.7ms 505: learn: 0.0096297 total: 857ms remaining: 61ms 506: learn: 0.0096246 total: 859ms remaining: 59.3ms 507: learn: 0.0096245 total: 860ms remaining: 57.5ms 508: learn: 0.0096244 total: 861ms remaining: 55.8ms 509: learn: 0.0096244 total: 862ms remaining: 54.1ms 510: learn: 0.0096244 total: 864ms remaining: 52.4ms 511: learn: 0.0096244 total: 865ms remaining: 50.7ms 512: learn: 0.0096244 total: 866ms remaining: 49ms 513: learn: 0.0096244 total: 868ms remaining: 47.3ms 514: learn: 0.0096244 total: 869ms remaining: 45.5ms 515: learn: 0.0096244 total: 870ms remaining: 43.8ms 516: learn: 0.0096244 total: 871ms remaining: 42.1ms 517: learn: 0.0096244 total: 873ms remaining: 40.4ms 518: learn: 0.0096244 total: 874ms remaining: 38.7ms 519: learn: 0.0096244 total: 875ms remaining: 37ms 520: learn: 0.0096244 total: 876ms remaining: 35.3ms 521: learn: 0.0096244 total: 878ms remaining: 33.6ms 522: learn: 0.0096244 total: 879ms remaining: 31.9ms 523: learn: 0.0096244 total: 880ms remaining: 30.2ms 524: learn: 0.0096244 total: 882ms remaining: 28.6ms 525: learn: 0.0096244 total: 883ms remaining: 26.9ms 526: learn: 0.0096244 total: 884ms remaining: 25.2ms 527: learn: 0.0096244 total: 886ms remaining: 23.5ms 528: learn: 0.0096244 total: 887ms remaining: 21.8ms 529: learn: 0.0096244 total: 888ms remaining: 20.1ms 530: learn: 0.0096244 total: 890ms remaining: 18.4ms 531: learn: 0.0096244 total: 891ms remaining: 16.7ms 532: learn: 0.0096244 total: 892ms remaining: 15.1ms 533: learn: 0.0096244 total: 894ms remaining: 13.4ms 534: learn: 0.0096244 total: 895ms remaining: 11.7ms 535: learn: 0.0096244 total: 896ms remaining: 10ms 536: learn: 0.0096244 total: 897ms remaining: 8.36ms 537: learn: 0.0096244 total: 899ms remaining: 6.68ms 538: learn: 0.0096244 total: 900ms remaining: 5.01ms 539: learn: 0.0096244 total: 901ms remaining: 3.34ms 540: learn: 0.0096244 total: 902ms remaining: 1.67ms 541: learn: 0.0096244 total: 904ms remaining: 0us Bagging Classifier Accuracy: 0.8967391304347826
X = newDf.drop('HeartDisease', axis=1)
y= newDf['HeartDisease']
X_train, X_val, y_train, y_val = train_test_split(X, y, test_size=0.2, random_state=42)
#'iterations': 542, 'learning_rate': 0.21231296216531056, 'depth': 6, 'l2_leaf_reg': 13.675507885439055
cat_model = CatBoostClassifier(iterations=542, learning_rate=0.21231296216531056, depth=6, l2_leaf_reg=13.675507885439055)
cat_model.fit(X_train, y_train, eval_set=(X_val, y_val), early_stopping_rounds=50)
accuracy = cat_model.score(X_val, y_val)
print("Accuracy: %.2f%%" % (accuracy * 100.0))
0: learn: 0.5416929 test: 0.5635412 best: 0.5635412 (0) total: 2.68ms remaining: 1.45s 1: learn: 0.4664725 test: 0.4889991 best: 0.4889991 (1) total: 4.92ms remaining: 1.33s 2: learn: 0.4138830 test: 0.4341598 best: 0.4341598 (2) total: 6.82ms remaining: 1.22s 3: learn: 0.3805415 test: 0.4174725 best: 0.4174725 (3) total: 8.7ms remaining: 1.17s 4: learn: 0.3527256 test: 0.3942016 best: 0.3942016 (4) total: 10.4ms remaining: 1.12s 5: learn: 0.3375079 test: 0.3825182 best: 0.3825182 (5) total: 12.3ms remaining: 1.1s 6: learn: 0.3239917 test: 0.3727730 best: 0.3727730 (6) total: 14ms remaining: 1.07s 7: learn: 0.3090762 test: 0.3667810 best: 0.3667810 (7) total: 16ms remaining: 1.07s 8: learn: 0.2970254 test: 0.3615358 best: 0.3615358 (8) total: 17.7ms remaining: 1.05s 9: learn: 0.2868061 test: 0.3541081 best: 0.3541081 (9) total: 19.4ms remaining: 1.03s 10: learn: 0.2799478 test: 0.3510609 best: 0.3510609 (10) total: 21.2ms remaining: 1.02s 11: learn: 0.2706260 test: 0.3483959 best: 0.3483959 (11) total: 22.8ms remaining: 1s 12: learn: 0.2661453 test: 0.3462456 best: 0.3462456 (12) total: 24.4ms remaining: 993ms 13: learn: 0.2605051 test: 0.3426619 best: 0.3426619 (13) total: 25.9ms remaining: 978ms 14: learn: 0.2549583 test: 0.3363530 best: 0.3363530 (14) total: 27.7ms remaining: 972ms 15: learn: 0.2497569 test: 0.3320355 best: 0.3320355 (15) total: 29.2ms remaining: 959ms 16: learn: 0.2441153 test: 0.3298400 best: 0.3298400 (16) total: 30.7ms remaining: 947ms 17: learn: 0.2409281 test: 0.3262885 best: 0.3262885 (17) total: 32.4ms remaining: 943ms 18: learn: 0.2334771 test: 0.3216092 best: 0.3216092 (18) total: 33.9ms remaining: 933ms 19: learn: 0.2293128 test: 0.3190773 best: 0.3190773 (19) total: 35.6ms remaining: 930ms 20: learn: 0.2254262 test: 0.3169948 best: 0.3169948 (20) total: 37.1ms remaining: 921ms 21: learn: 0.2211648 test: 0.3151711 best: 0.3151711 (21) total: 38.9ms remaining: 919ms 22: learn: 0.2174239 test: 0.3153031 best: 0.3151711 (21) total: 40.6ms remaining: 917ms 23: learn: 0.2132543 test: 0.3140192 best: 0.3140192 (23) total: 42.2ms remaining: 911ms 24: learn: 0.2101384 test: 0.3143859 best: 0.3140192 (23) total: 44.1ms remaining: 911ms 25: learn: 0.2071902 test: 0.3090275 best: 0.3090275 (25) total: 46.3ms remaining: 918ms 26: learn: 0.2029773 test: 0.3084215 best: 0.3084215 (26) total: 48.1ms remaining: 918ms 27: learn: 0.1967922 test: 0.3131916 best: 0.3084215 (26) total: 49.7ms remaining: 913ms 28: learn: 0.1939179 test: 0.3098418 best: 0.3084215 (26) total: 51.5ms remaining: 911ms 29: learn: 0.1924468 test: 0.3123539 best: 0.3084215 (26) total: 53.1ms remaining: 906ms 30: learn: 0.1920412 test: 0.3120894 best: 0.3084215 (26) total: 54.9ms remaining: 905ms 31: learn: 0.1889335 test: 0.3128485 best: 0.3084215 (26) total: 56.7ms remaining: 903ms 32: learn: 0.1855072 test: 0.3114742 best: 0.3084215 (26) total: 58.6ms remaining: 903ms 33: learn: 0.1823854 test: 0.3125166 best: 0.3084215 (26) total: 60.1ms remaining: 898ms 34: learn: 0.1788958 test: 0.3093479 best: 0.3084215 (26) total: 61.7ms remaining: 894ms 35: learn: 0.1749224 test: 0.3107830 best: 0.3084215 (26) total: 63.3ms remaining: 890ms 36: learn: 0.1721868 test: 0.3090899 best: 0.3084215 (26) total: 64.9ms remaining: 886ms 37: learn: 0.1720375 test: 0.3092606 best: 0.3084215 (26) total: 66.6ms remaining: 884ms 38: learn: 0.1713699 test: 0.3089562 best: 0.3084215 (26) total: 68.2ms remaining: 879ms 39: learn: 0.1682653 test: 0.3059228 best: 0.3059228 (39) total: 69.8ms remaining: 876ms 40: learn: 0.1643120 test: 0.3090332 best: 0.3059228 (39) total: 71.5ms remaining: 874ms 41: learn: 0.1641586 test: 0.3092276 best: 0.3059228 (39) total: 73.6ms remaining: 876ms 42: learn: 0.1609137 test: 0.3110994 best: 0.3059228 (39) total: 75.3ms remaining: 873ms 43: learn: 0.1573091 test: 0.3114150 best: 0.3059228 (39) total: 76.8ms remaining: 869ms 44: learn: 0.1571697 test: 0.3113936 best: 0.3059228 (39) total: 78.4ms remaining: 866ms 45: learn: 0.1547339 test: 0.3134907 best: 0.3059228 (39) total: 79.9ms remaining: 862ms 46: learn: 0.1546205 test: 0.3134828 best: 0.3059228 (39) total: 81.5ms remaining: 858ms 47: learn: 0.1526230 test: 0.3161402 best: 0.3059228 (39) total: 83.1ms remaining: 855ms 48: learn: 0.1521564 test: 0.3163583 best: 0.3059228 (39) total: 84.5ms remaining: 850ms 49: learn: 0.1520450 test: 0.3164415 best: 0.3059228 (39) total: 86ms remaining: 846ms 50: learn: 0.1494562 test: 0.3172253 best: 0.3059228 (39) total: 87.7ms remaining: 844ms 51: learn: 0.1483615 test: 0.3181409 best: 0.3059228 (39) total: 89.3ms remaining: 841ms 52: learn: 0.1482301 test: 0.3182532 best: 0.3059228 (39) total: 90.8ms remaining: 838ms 53: learn: 0.1469841 test: 0.3182539 best: 0.3059228 (39) total: 92.3ms remaining: 834ms 54: learn: 0.1429885 test: 0.3155260 best: 0.3059228 (39) total: 93.9ms remaining: 831ms 55: learn: 0.1395244 test: 0.3169990 best: 0.3059228 (39) total: 95.4ms remaining: 828ms 56: learn: 0.1390191 test: 0.3169014 best: 0.3059228 (39) total: 97.1ms remaining: 826ms 57: learn: 0.1382907 test: 0.3180109 best: 0.3059228 (39) total: 98.8ms remaining: 825ms 58: learn: 0.1371635 test: 0.3182552 best: 0.3059228 (39) total: 101ms remaining: 823ms 59: learn: 0.1365927 test: 0.3190689 best: 0.3059228 (39) total: 102ms remaining: 823ms 60: learn: 0.1365149 test: 0.3189560 best: 0.3059228 (39) total: 104ms remaining: 822ms 61: learn: 0.1329079 test: 0.3210751 best: 0.3059228 (39) total: 106ms remaining: 823ms 62: learn: 0.1315968 test: 0.3221377 best: 0.3059228 (39) total: 108ms remaining: 824ms 63: learn: 0.1309848 test: 0.3222394 best: 0.3059228 (39) total: 110ms remaining: 823ms 64: learn: 0.1277752 test: 0.3234421 best: 0.3059228 (39) total: 112ms remaining: 822ms 65: learn: 0.1250558 test: 0.3245861 best: 0.3059228 (39) total: 114ms remaining: 820ms 66: learn: 0.1236897 test: 0.3249892 best: 0.3059228 (39) total: 115ms remaining: 818ms 67: learn: 0.1213160 test: 0.3264500 best: 0.3059228 (39) total: 117ms remaining: 818ms 68: learn: 0.1212723 test: 0.3265059 best: 0.3059228 (39) total: 119ms remaining: 817ms 69: learn: 0.1192795 test: 0.3284897 best: 0.3059228 (39) total: 121ms remaining: 815ms 70: learn: 0.1174189 test: 0.3290550 best: 0.3059228 (39) total: 122ms remaining: 812ms 71: learn: 0.1151241 test: 0.3303168 best: 0.3059228 (39) total: 124ms remaining: 810ms 72: learn: 0.1135542 test: 0.3309889 best: 0.3059228 (39) total: 126ms remaining: 808ms 73: learn: 0.1121437 test: 0.3340138 best: 0.3059228 (39) total: 127ms remaining: 806ms 74: learn: 0.1090557 test: 0.3343125 best: 0.3059228 (39) total: 129ms remaining: 805ms 75: learn: 0.1067336 test: 0.3339308 best: 0.3059228 (39) total: 131ms remaining: 805ms 76: learn: 0.1043013 test: 0.3335574 best: 0.3059228 (39) total: 133ms remaining: 804ms 77: learn: 0.1027382 test: 0.3334646 best: 0.3059228 (39) total: 135ms remaining: 804ms 78: learn: 0.1023474 test: 0.3337899 best: 0.3059228 (39) total: 137ms remaining: 801ms 79: learn: 0.1014353 test: 0.3328400 best: 0.3059228 (39) total: 139ms remaining: 800ms 80: learn: 0.0986249 test: 0.3328455 best: 0.3059228 (39) total: 140ms remaining: 799ms 81: learn: 0.0985447 test: 0.3328425 best: 0.3059228 (39) total: 142ms remaining: 798ms 82: learn: 0.0984268 test: 0.3327751 best: 0.3059228 (39) total: 144ms remaining: 796ms 83: learn: 0.0982480 test: 0.3326588 best: 0.3059228 (39) total: 146ms remaining: 795ms 84: learn: 0.0980714 test: 0.3327144 best: 0.3059228 (39) total: 147ms remaining: 792ms 85: learn: 0.0967578 test: 0.3332326 best: 0.3059228 (39) total: 149ms remaining: 790ms 86: learn: 0.0963742 test: 0.3331412 best: 0.3059228 (39) total: 151ms remaining: 788ms 87: learn: 0.0946368 test: 0.3337064 best: 0.3059228 (39) total: 152ms remaining: 785ms 88: learn: 0.0928662 test: 0.3322225 best: 0.3059228 (39) total: 154ms remaining: 782ms 89: learn: 0.0915664 test: 0.3335496 best: 0.3059228 (39) total: 155ms remaining: 779ms Stopped by overfitting detector (50 iterations wait) bestTest = 0.3059228392 bestIteration = 39 Shrink model to first 40 iterations. Accuracy: 91.30%
def getDataFrame2(Age, Sex, ChestPainType, RestingBP, Cholesterol, FastingBS, RestingECG, MaxHR, ExerciseAngina, Oldpeak, ST_Slope):
# Use one-hot encoding for categorical features
chest_pain_types = ['ASY', 'ATA', 'NAP', 'TA']
resting_ecg_types = ['ST', 'Normal', 'LVH']
exercise_angina_types = ['N', 'Y']
st_slope_types = ['Down', 'Flat', 'Up']
data = {
'Age': [Age],
'Sex': [1 if Sex == 'M' else 0],
'RestingBP': [RestingBP],
'Cholesterol': [Cholesterol],
'FastingBS': [FastingBS],
'MaxHR': [MaxHR],
'Oldpeak': [Oldpeak],
}
# Use a dictionary for mapping categorical variables
categorical_mapping = {
'ChestPainType': chest_pain_types,
'RestingECG': resting_ecg_types,
'ExerciseAngina': exercise_angina_types,
'ST_Slope': st_slope_types,
}
for cat_feature, cat_values in categorical_mapping.items():
data.update({f'{cat_feature}_{cat_val}': [1 if cat_val == eval(cat_feature) else 0] for cat_val in cat_values})
df = pd.DataFrame(data)
return df
Age = 70
# [ M or F ]
Sex = 'M'
# [ TA or ATA or NAP or ASY ]
ChestPainType = 'ASY'
RestingBP = 140.0
Cholesterol = 289.0
FastingBS = 0
# [ Normal or ST or LVH ]
RestingECG = 'Normal'
MaxHR = 120
# [ N or Y ]
ExerciseAngina = 'N'
Oldpeak = 1.0
# [ Up or Flat or Down ]
ST_Slope = 'Flat'
df = getDataFrame2(Age,Sex, ChestPainType, RestingBP, Cholesterol, FastingBS, RestingECG, MaxHR, ExerciseAngina, Oldpeak, ST_Slope)
df[nonInt8Columns] = scaler.transform(df[nonInt8Columns])
finalPrediction = cat_model.predict(df)
if finalPrediction[0] == 0:
print('You are not currently at risk of a Heart Attack')
else:
print('You are currently at risk of a Heart Attack')
You are currently at risk of a Heart Attack